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PREFACE

This technical report is the record of the Air Force Research Forum for
Intelligent Tutoring Systems and provides a synthesis of the field of Intelligent Tutoring
Systems (ITSs). It contains seven essays, written at the general, foundational level, each
treating an integral aspect of the field. Each essay defines its topic, its relationship to
other topics, the state-of-the art, basic research issues and near-term applications
projects. At the forum, each essay presentation was followed by a discussant’s critique.
This record contains edited transcriptions of those critiques. The contents of this
volume are rounded out by introductory and final chapters. The introductory chapter
provides a thorough overview of the seven essays. The final chapter synthesizes the
research and development recommendations made in the essays. Appendices provide
short descriptiuns of the ITS systems referred to in the report and a glossary of ITS
terms.

The genesis of this report was a planning process set into motion by the Air
Force Human Resources Laboratory (AFHRL), to develop a research agenda in ITSs.
Acknowledged leaders in the field were contacted and agreed to participate in this
process. The authors, editors and sponsors held a meeting and agreed on the logical
organization of the field reflected in the chapters and on the assignment of ITS topics to
each chapter. Outlines for each chapter were developed and presented in a workshop
held by AFHRL. Based on feedback from the workshop, the outlines were refined and
draft papers were written. These were circulated among the authors, editors and
sponsors, critiqued and revised. The revised papers were presented at the AFHRL
Research Planning Forum for Intelligent Tutoring Systems, held September 3-4, 1986, in
San Antonio, Texas.

We would like to acknowledge Lt. Col. Hugh L. Burns, Chief of the Intelligent
Systems Branch, Training Systems Division, AFHRL for his role initiating and
monitoring this work. We would like to thank the Air Force Office of Scientific
Research for sponsoring this work through Grant Number AFOSR-86-0144 under the
guidance of Dr. Alfred R. Fregly, Program Manager, Life Sciences Directorate. Thanks
to Lt. Charles G. Capps of AFHRL and to Dr. Matthew J. Wayner, Director of the
Division of Life Sciences, University of Texas at San Antonio, and his assistant Janie
Ramos for their support in organizing the meetings, workshop, and conference associated
with this work. Special acknowledgments are due to Janet L. Grassia, who did the copy
editing for this report, to Marjorie J. DeFries, who assisted in the report editing as well
as managed the copyright releases for the figures, and to Tania M. Sizer, who prepared
the glossary.

Martha C. Polson J. Jeffrey Richardson
Institute for Cognitive Science Center for Applied Artificial Intelligence
University of Colorado Graduate School of Business Administration

University of Colorado
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CHAPTER 1

FOUNDATIONS OF INTELLIGENT TUTORING SYSTEMS:
AN INTRODUCTION

Lt. Col. Hugh L. Burns
Chief, Intelligent System Branch
1st Lt. Charles G. Capps
Research Psycholo
Training Systems Division
Air Force Human Resources Laboratory
Brooks Air Force Base
San Antonio, Texas

Artificial intelligence in education comes of age in systems now called intelligent
tutors, a step beyond traditional computer-assisted instruction. Computer-assisted
instruction evolves toward intelligent tutoring systems (ITSs) by passing three tests of
intelligence. First, the subject matter or domain must be "known" to the computer system
well enough for this embedded expert to draw inferences or solve problems in the domain.
Second, the system must be able to deduce a learner’s approximation of that knowledge.
Third, the tutorial strategy or pedagogy must be intelligent in that the "instructor in the box"
can implement strategies to reduce the difference between expert and student performance.
At the foundation of ITSs, therefore, one finds three special kinds of knowledge and
problem-solving expertise programmed in a sophisticated instructional environment. This
book examines these knowledge foundations--expert knowledge, student diagnostic
knowledge, and the instructional or curricular knowledge--in detail. This book also
describes (a) how these kinds of knowledge are embodied in computer-assisted instructional
environments; (b) how these systems accrue the advantages of advanced computer interface
technologies; (c) how ITSs will emerge in the real world of complex problem solving; and
finally (d) how researchers must learn to evaluate the effectiveness and overall quality of
these dynamic systems in a world where one day machine tutoring will be taken for granted.

The purpose of this chapter is to introduce the major research issues and
development themes that the primary authors--John Anderson, Kurt VanLehn, Henry
Halff, Richard Burton, James Miller, William Johnson, David Littman, and Elliot Soloway--
explore and amplify. At the core of this book is a sitple notion that an ITS has an anatomy
(see Figure 1.1), an anatomy that creates convenient classifications of the research and
development dimensions.

The expert module contains the domain knowledge. The student diagnostic module
diagnoses what t. * student knows. The instructor module identifies which deficiencies in
knowledge to focus on and selects strategies to present that knowledge. The instructional
environment and human-computer interface channel tutorial communication. In addition to
these components, implementation and evaluation issues are most important. When,
where, and how should these ITSs be used? How effective is the ITS and how is its quality
understood? ITSs are hard to design and the field requires further study. Consequently, as
the research community moves toward more and better I'TSs, the need for integration og the
"distinct" modules should be obvious. It should come as no surprise that in a complex,
knowledge-based, problem-solving, computer-assisted tutoring system, the whole necessarily
becomes more than the sum of its parts.
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Figure 1.1. The ITS Anatomy.
I. THE EXPERT MODULE

John Anderson, whose current research is in the architecture of cognition and in pro-
duction systems capable of simulating intelligent human behavior, identifies the concepts
and challenges of designing the expert module, that part of a tutor that provides the domain
knowledge. The major lesson that the artificial intelﬂgence community has learned from all
of the research in expert systems is that any expert module must have an abundance of
specific and detailed knowledge derived from people who have years of experience in a
particular domain. Consequently, much effort is expended in discovering and codifying the
domain knowledge, thus distilling years of experience into a knowledge representation. The
enormous amount of knowledge in complex domains as well as the interrelationship of that
knowledge means that designing and developing the expert module may be the most
demanding chore in building an ITS. Authoring systems for intelligent tutors, alone, are
unlikely to discover and codify all of the necessary domain knowledge. Thus, investigating
how to encode knowledge and how to represent such expertise in an remains the central
focus of developing an expert module.




How does a research team explicitly go about encoding the knowledge in the ITS
data structure? Three approaches are common, each moving toward a more cognitively
faithful representation of the conter* expertise. The first is finding a way to encode the
knowledge without actually codifying the underlying human intelligence. The literature
often refers to these as "black box" expert systems. The simple input-output information
available from a black box system is not suitable for instruction. One method of enhancing
these models is to employ a methodology called "issue-based tutoring" (Burton and Brown,
1982). In other words, a programmer attaches instruction to specific issues observable in
the behavior of both the expert and the student within the learning environment. Thus,
when a student chooses (or fails to choose) a behavior, he or she may receive feedback
about the particular behavior. The examples in the artificial intelligence canon include
systems that use a mathematical equation-solving process in place of the symbolic human
&ocessing. SOPHIE and Steamer (Brown, Burton, & deKleer, 1982; Hollan, Hutchins, &

eitzman, 1984) perform their calculations through such techm’gues. Although the
architectures of these systems have not represented human knowledge, they do produce
outputs that are useful in recognizing differences between student and expert performance.

The second approach involves the building of a "glass box model" to influence the
tutorial mechanisms ofp the system. To do this, a researcher must use knowledge engineering
techniques. A knowledge engineer interviews an expert and designs a computational
representation for delivering the knowledge, usually a rule-based formalism. This
implementation does not necessarily correspond to the way the human expert reasons,
especially in novel, unfamiliar situations or when providing explanations. Thus, this glass-
box model only allows for explanations of the information process inherent in the rules of its
knowledge base. The rules are typically more strategically aligned with performance rather
than explanation, limiting their utility in an instructional setting. However, knowledge
engineering tools and techniques, that is, ways of extracting and codifying information, are
becoming more and more useful for ITS development as attention is paid toward making
representations more faithful to the breadth and depth of expert reasoning

Nevertheless, because so much effort is expended in the knowledge acquisition
process, turning preexisting expert systems into s is a fond ambition. Clancey’s
GUIDON (1982) tried to implement MYCIN (Buchanan & Shortliffe, 1984)--an expert
system for diagnosing bacterial infections--as the expert model within an ITS. MYCIN’s
representation of knowledge was highly "compiled." By analogy, a computer program’s
source code (high-level programming instructions written in languages such as FORTRAN,
PASCAL, or CgBOL is compiled into object code (the primitive hardware instructions the
computer responds to). The source code is relatively easy to read, but not executable by a
computer. The object code is "machine readable," the computer can run it, but it is
extremely difficult for people to understand. Extending the analogy even further, the
“readability” of source code itself depends on the extent to which the programmer followed
structured programming practices. Similarly, the "readability," or utility in explanation, of a
knowledge base depends on the "principledness” of the knowledge engineer’s approach to
representing the domain knowledge in the rule base (Clancey, 1981). The more principled
and well-structured, the better the expert system serves for explanation and instruction.
Clancey’s research illustrates how limited expert systems can be in instructional settings.

The third approach to encoding the domain knowledge simulates not only the
knowledge but also the way a human uses that knowledge. Here, in this area of cognitive
modeling, the cognitive science community sees the greatest payoff for the design and
development of ITSs. If the goal of cognitive modeling is to develop as realistic a simulation
of human problem-solving processes as possible, many research questions must be
answered. These questions include: (a) which psychological components are essential for
tutoring, (b) at what level they should be represented, and (c) how should different types of
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knowledge be treated--procedural, declarative, and qualitative. One way of classifying the
psychological components is according to problem-solving models as articulated by Newell
and Simon (1972), among others. These problem-solving models should have the highest
cognitive fidelity, that is, correspondence to actual human thought processes, as possible.

Because the three types of knowledge dictate the strategies of instruction, they need
clear definition. Procedural knowledge is knowledge about how to perform a task and is
well represented in the literature on expert systems as rule-based, production systems.
Many artificial intelligence researchers believe that production rules witl‘m) their recognize-act
cycle capture the basic character of human cognition and, consequently, offer exciting
possibilities for ITSs. Declarative knowledge contrasts with procedural knowledge in that it
i1s fact-like, not specialized for a particular use. Finally, qualitative knowledge is the causal
understanding that allows a human to reason about behavior using mental models of
systems. One of the most challenging issues will be constructing a metatheory that unifies
and shows the relationships between procedural, declarative, and qualitative knowledge.
John Anderson concludes that research investigating expert modules for tutoring systems
will be a unique test of the sufficiency of cognitive theories. Conversely, the design of an ITS
will contribute to the discovery of more accurate theories of cognition.

II. THE STUDENT DIAGNOSIS MODULE

Kurt VanlLehn describes the essential problems of student modeling in ITSs. Many
ITSs infer a model of the student’s current understanding of the subject matter and then
use that understanding to adapt the instruction to the student’s particular needs. The
knowledge structure that depicts the student’s current state is the student model and the
reasoning process to develop it is called student diagnosis. Outputs from student diagnostic
modules can be used for a variety of purposes such as advancing through selected
curriculums, coaching or offering unsolicited advice, generating new problems, and adapting
sets of explanations. VanLehn describes the research issues in terms of three dimensions
and discusses the need for: (a) improving the bandwidth of available knowledge about the
student, (2) distinctly identifying types of knowledge to be learned, and (%) assessing
differences between students and experts.

How much of the learner’s activity is available to the diagnostic program? This is the
bandwidth question, according to VanLehn. Most programs work on the low end of the
information band where only the final state, that is, the student’s answer to a question, is
available to the system. Access to an intermediate state allows the diagnostic module to
assess the observable physical activity, for example, key strokes or scratch work. The
bandwidth of potentially the greatest value allows ITSs access to the learner’s mental state,
step by step as reasoning proceeds. Because the student diagnostic module needs reliable
knowledge about the learner’s mental state, bandwidth is critical in designing ITSs.

The second dimension of the student diagnostic module is the target knowledge type.
VanLehn classifies knowledge types into two types of procedural knowledge, flat and hierar-
chical, and declarative knowledge. Specialized strategies for using (or interpreting)
knowledge are paired with each type of knowledge. This interpretation process is more
difficult to implement for declarative knowledge than for procedural. The interpreter for
hierarchical procedural knowledge is more difficult than for flat procedural knowledge.
Because the difficulty of the student diagnostic process is closely related to the difficulty of
the intcrgretation process, a flat procedural knowledge base makes the student modeling
process the easiest, whereas a declarative knowledge base presents the most difficult student
modeling problem.




Assessing differences between students and experts is the third dimension VanLehn
discusses. In programming a student diagnostic module, most ITS designers use the same
knowledge representation scheme as was used in the expert module so that the expert and
student modules actually share the same knowledge base. This is called the overlay method
of student modeling, where the student’s knowledge is represented as a subset of the
expert’s. Hence, missing conceptions are represented, but not misconceptions.

The next level of complexity in student modeling is to represent misconceptions,
erroneous and incorrect knowledge, as opposed to simply incomplete knowledge. In this
approach, the overlay model is augmented by a bug library. Bugs, that is, misconceptions or
misunderstandings, must typically be collected empirically, but can be generated
computationally from the target procedure, as is done in repair theory (Brown & VanLehn,
1980). To reduce the empirical work required for obtaining an exhaustive set of bugs, bugs
are sometimes generated from bug part libraries, where bug parts, fragments of production
rule clauses, are assembled into bugs. This represents the h:fgest degree of sophistication in
student modeling. Success in this is critically tied to the bandwidth issue.

Designing the student diagnostic module is a high-risk venture and, consequently,
presents a wide range of issues to be investigated. How detailed do the descriptions of the
student’s knowledge have to be? What models of learning can be designed as a
superstructure for the diagnostic algorithms? How much should the artificial intelligence
research community push expert systems technology toward ITS technology? Of course, a
variety of studies of bandwidth, knowledge type, and student-expert differences could be
executed. This research promises many useful outcomes.

III. THE CURRICULUM AND INSTRUCTION MODULE

Henry Halff describes how the instructional module and curriculum issues give form
and meaning to ITS research and development as instructional systems. An should
have three tutoring characteristics: (@) controls over the representation of the instructional
knowledge for selecting and sequencing the subject matter; (b) capabilities for responding
to students’ questions about instructional goals and content; and (c) strategies for
determining when students need help and for delivering the appropriate help. The goal of
the instructional module is to circumscribe the nature of teaching and to implement
teaching as a solution to the educational communication problem. Separating instructional
and content expertise--or the "dancer from the dance," as William Butler Yeats once wrote-
-is the challenge in designing the instructional module. Obviously, the tﬁes of knowledge
and the nature of the learning process interrelate with the teaching act. Less obvious is the
interaction between content specifics and instructional strategy.

Specific knowledge necessary for learning but not necessary for proficient
performance is called propaedeutics, or enabling knowledge. Often this kind of knowledge is
not represented in designing a tutor, when the focus is more on the knowledge in the expert
module. In such cases, the required instructional background knowledge often comes about
as an afterthought, once the building process has begun. This is the danger that lies in
building an expert system first, then enhancing that expertise with explanations or
instructional sequences designed to foster an effective learning experience for the ITS user.

Mitigating against this problem somewhat, Halff contends that there are families of
instructional knowledge that could transfer from one tutor to another, for example,
diagnostic tutorial routines and simulation tutorial routines. Instructional knowledge
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routines should allow a student to relate theory to practice, to propose solutions, to develop
more effective problem-solving strategies. ey should also minimize the load on the
student’s working memory while new concepts are being internalized.

Thus, the instructional module should and can be more than just a by-product of the
expert and student modules, and some instructional principles should be robust and explicit
enough to generalize across domains. The available literature on instructional theory

rovides instructional methodologies and can help designers decide such questions as what
information to present in what sequence.

If a lesson can be found in curriculum design, it is simply that the overall goals of a
tutor must be clear and well communicated. To that end, an ITS must appropriately
manage the content and size of the content, conveying that structure to a learner and
insuring that the instructional goals are within the learner’s reach.

Presentation techniques all depend on the instructional objective. Elicitation and
explanation help lead learners to an understanding of facts and concepts. Case
presentations and simulated entrapment induce learners to formulate rules and to
understand relations. Exercises, drills, and examples allow learners to generalize from
subskills to the performance of the full task. Seeing the required skills prepares the student
for the real-life situation. All of these strategies should be encompassed in an ITS design
when the instructional module is laid out. The instructional engine that propels the
presentation, Halff contends, must be investigated more fully.

Achieving any c?namic flexibility at the instructional level requires designing specific
instructional states and means of transitioning from one state to another. Here is where
artificial intelligence techniques may be the most useful in the instructional module. Meno-
tutor (Woolf & McDonald, 1985) is one example of an attempt to achieve this flexibility by
manipulating 27 interrelated instructional states. The ITS community is thus articulating
needs for meta-rules to accommodate this dynamic reformulation of the tutor at the
instructional level.

Another challenge to artificial intelligence involves understanding instructional
discourse. Such understanding, for example, would include strategies appropriately
intervening in the course of a student’s problem-solving activity. Intervention, on the one
hand, allows the ITS control of the tutorial process, but it is also important in keeping a
learner on the right track by preventing inappropriate or incorrect learning. Beyond
intervention, that is, offering advice, hints or guidance, other strategies are needed for
answering 3uestions and providing explanations. These kinds of abilities must be
incorporated in the design of an adequate instructional module and depend on further
progress in the artificial intelligence field of natural language comprehension. Attempts to
use templates (Carbonell, 1970) or semantic networks (Brown, Burton & deKleer, 1982)
have been tried; however, a comprehensive theory of explanation that would make
automation possible has yet to be proposed.

As computer-assisted instruction becomes more intelligent in itself and more
intelligently used in the classroom, educators will contribute models for properly shaping an
automated instructional process. The fields of instruction and curriculum design can supply
§uidelines for the general support of ITS design and sFeciﬁcations for devclglpincF tool kits

or certain educational applications. However, many of the tougher issues of I'TS design are,
so far, beyond the reach of these guidelines and tools. Still lacking, Halff points out, are ga)
the dﬁign principles that determine whether a deductive or inductive approach is taken for
the instructional module, (b) precise theories that account for instructional
effectiveness, and (c) explicit instructional principles in particular domains. Recognizing

6




these deficiencies, however, is a sign of real progress. The effort to construct an
instructional module--that explicit computational model of an instructor--ought to unravel
some of the pedagogical paradoxes in the human tutoring process. Instructional knowledge
acquisition promises to be a rich area for research and development--both for theory and for
practice.

IV. THE INSTRUCTIONAL ENVIRONMENT

An instructional environment consists of those elements of an ITS that support what
the learner is doing: situations, activities, and tools provided by the system to facilitate
learning. Richard Burton explores the issues pertaining to the instructional environment by
establishing a pedagogical foundation, by carefully examining some of the more successful
"microworlds," and by presenting near-term and long-term research agendas.

The activities and tools presented to the learner in an ITS always reflect an
underlying educational philosophy. The trend, as computers get faster and as ITS
researchers and educators become more creative and clever, is clearly to create a more
open, more robust, more fulfilling, and more effective educational experience. Several
principles for building instructional environments have emerged from this trend. An
instructional environment should prove that there is more in an than meets the eye. It
should foster constructive learning through activities--tools, games, worlds--designed to use
students’ prior knowledge and to present students with new information and experiences
from which they can construct new knowledge. The environment should emphasize
conceptual understanding, not rote procedures. It should attempt to connect in-school and
outside-school knowledge. It should be designed so that students feel self-monitored,
allowing effective learners to assume responsibility for their own learning. The environment
should also be developed on the premise that education is a life-long pursuit. From such
principles, the educational technology community generally believes that computerized
instructional environments bec »me self-contained worlds that can enhance and motivate
learning--even if the environments themselves are nt intelligent.

Among research considerations pertaining to instructional environments are: (a)
levels of abstraction, (b) fidelity, (c) sequences, and (d) help routines. Abstraction means
what features of the real world are represented in the design of the environment while
fidelity refers to how closely the simulated environmeni matches the real world. Important
here are considerations of the different types of fidelity; for example, physical fidelity,
display fidelity, mechanical fidelity, and cognitive fidelity. Sequences means the framework
a designer constructs for learning complex skills. A learner progresses through a sequence
of increasingly complex microworlds, each providing new challenges and new sets of
achievable goals. By means of help routines the designer takes into account additional
information learners may need for operating the ITS. But there are different degrees of
help. For example, help tells a learner what to do. Assistance or active help actually does
the task for the user. In addition to help and such active assistance are empowering tools,
reactive help systems, modeling, and--finally--tutoring itself.

The several instructional environments Burton examines share a sophistication in
educational design. Burton’s own research in sophisticated instructional environments is
well known in the intelligent tutoring heritage. In the electronic troubleshooting
environment of SOPHIE I (which stands for Sophisticated Instruction Environment), the
learner must find a fault in a broken piece of equipment. The tools are the measurement
devices, which receive their commands in English. The instructional environment of
SOPHIE provides circuit simulation, a natural language program, and routines for judging
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the adequacy of student actions and for offering advice. Foundational research like
Burton’s research on SOPHIE opened many doors for ITS designers.

Research opportunities in instructional environments exist in the near term and long
term. Generally, Burton sees near-term opportunities in taking advantage of new
technologies; the long-term focus of research will be more on basic scientific issues
concerning human conceptual problems. In the near future, studies that investigate the
power of various simulation kits or ITS design tools should give the research community
several environments to explore. The next generation of LISP processing machines should
also spur development of ITSs as well as experimental testing of various intelligent tutors.
Instructional environments will be enhanced to take advantage of innovations in computer
hardware--graphics chips, for example. The ITS design community should also make
advances based on new technologies such as read-write optical discs, speech processing
input/output, and faster parallel machines.

The long-term issues center on scientific assessments of the ways environments are
conceptualized by experts, learners, and instructors. For example, what tradeoffs must be
made among the various environmental properties?  What are the stages of
conceptualization in a problem-solving environment? How can an ITS use information that
the environment provides? Do we need color graphics? animation? natural language
processing?  speech synthesis? Instructional environments must also support the
transformation from incorrect concepts to correct ones. How should that be accomplished?

Additionally, the research community should carry out studies to articulate
appropriate fidelity requirements and to identify meta-skills useful in dynamic, instructional
environments. It will also be necessary to study environments to support the teaching of
social skills as well as intellectual skills. Simulation kits provide several exciting possibilities.
Medium-scale testing of these in the classroon environment will also be necessary.
Empowering tools that enable learners to design more explicit problem-solving settings for
themselves should provide some exciting research.

Creativity and cleverness mark the design of the few environments that have been
expressly designed for ITSs; creativity and cleverness will continue to be well exercised in
the design ancﬁ;evelopment of future intelligent tutors. But success in building instructional
environments will largely depend on how well designed the ITS’s human-computer interface
is.

V. THE HUMAN-COMPUTER INTERFACE

When considering human-computer interactions in ITSs, James Miller emphasizes
making appropriate tradecffs in the design of ITS interfaces. The learner working with an
ITS generally has two problems. First, the learner must learn some subject matter that he or
she may not understand. Why else would an ITS be used? The other problem is that the
learner must use the technology itself in order to learn and is very likely not an expert user.
If the human-computer interaction is poorly designed, a training session will probably be
ineffective. Simply put, if the learner has to spend significant intellectual energy working the
computer, then the learner has less intellectual and emotional energy for learning what is
supposedly being taught.

The goal of interface design, therefore, is to make the interface transparent. The re-
search community is beginning to think of the human-computer interaction as a
communication problem and to design this interaction as a system of semantic and
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contextual processes built on a solid conceptual model. The knowledge embedded in this
component of an ITS thus evolves from knowledge of previous computer systems, from
human interface research, from the real world objects that are being imitated in the
computer system, and from knowledge of the entire range of the communication process--
perceiving, understanding, and creating meaning.

The state of the art in interface research and development, Miller points out, allows
for two basic styles of design. The first allows users to become direct participants in the
domain; the second allows them to control the domain by instructing the system to carry out
desired actions. First-person interfaces, or direct manipulation intertaces as they are
sometimes called in the literature, are familiar as the icons in the images of the Apple
Macintosh personal computer. The soul of these interfaces is the icon whose manipulation is
intended to map directly to a desired outcome. The breakthrough for this kind of
interaction has been large bit-mapped displays and the mouse, a pointing and selecting
device. One of the advantages of iconic interaction is that learners do not have to
remember names of documents, commands, and so forth, because all of this information is
intrinsically part of the icon data structure. The strength of the first-person interface is its
self-evident properties; its weakness is extensibility. In the second-person interface, an ITS
user commands the system. Command languages are fairly well understood and can
powerfully interact with a system. The general thrust of endeavor in the intelligent tutoring
community, however, will be to minimize research on new command languages and
concentrate on more direct manipulation and interaction in the actual delivery of the tutor.

Where are the promising research opportunities for the interface design team in an
ITS project? First, the overall goal is to make the domain semantics visible. Studies that
illustrate ways of constructing models of complex domains with special support for learners’
acquisition of these representations and for special recognition of learners’ corresponding
conceptual models should be especially valuable. Investigation of the various graphical
techniques for presenting models ilso offers a large payoff, especially if the graphical
models are linked to various stages of the conceptualization. This direction points research
of interfaces toward a few of the issues pertinent to the instructional environment, for
example, level of abstraction and fidelity.

Another interesting research issue will be developin%l tool kits for interface
development. Such kits would include direct manipulation techniques, natural language
interfaces, speech processing, videodiscs, touch screen technologies, and combinations of
these. How these technologies will evolve for intelligent systems users is difficult to predict.
When Miller speculates about the arrival of tomorrow’s technology--three-dimensional

raphics, continuous speech recognition, mammoth displays--he doubts that it will be
immediately clear how to use this technology wisely. Finally, although many of the interface
technologies could help integrate the separate ITS modules, developers must still suit the
content to the interface and the interface to the content. If the interface is overdone and
calls attention to itself, then the communication between the student and the instructional
system will be impaired.

VI. ITS PRAGMATICS

Bill Johnson reminds developers of intelligent tutors that the day comes when their
systems--built in the laboratories--must make the transition to the real world. This
generates a number of pragmatic considerations. The individual modules, the
environments, the interfaces must be integrated into a working entity. An ITS must be used
in its educational, technical, or industrial setting. If the jury is still out on the success and
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promise of ITSs as a mode of instruction, the answers to many implementation questions
have not been forthcoming either. Certainly it is true that nothing is as practical as good
theory; nevertheless, there are pragmatic issues beyond good theory. Who are the users?
What are the expectations? How can intelligent tutors be effectively implemented? Suffice
it to say that a person does not simply decide in a vacuum that an ITS is the most
appropriaée means of instruction for a given domain--certain practical matters must be
considered.

The willingness of the sponsors and the users to adapt this technology is an important
practical consideration. Support must be generated across several levels of the affected
organization. Initially, someone must have a desire to implement the ITS. Whether it is to
introduce a new curriculum, to improve an old one, or perhaps to supplement existing
courses, someone in a position of authority must see a need to institute intelligent tutoring.
Then, that person must provide the necessary support both throughout the full research and
development cycle and during the implementation of the system.

Five considerations are crucial to determining whether implementation of an ITS is
currently feasible. First, ITSs are ready for trial application but admittedly are in their
infancy at this time. Second, the programming tools developed in artificial intelligence for
knowledge engineering and intelligent authoring as well as the necessary "field” hardware
are not sufficient. ird, hardware and sokgtware are constantly changing--and with
increasing speed. Fourth, the demand for various personnel resources within the
development team is quite drastic--subject matter experts, students, instructors, computer
engineers, computer scientists, managers of advanced technology programs are all needed.
Fitth, evaluation of intelligent tutoring, or for that matter any evaluation of artificial
intelligence system, is expensive in terms of both money and time.

This initial picture may seem bleak but it is important to note these deficiencies. ITS
developers must present their research fairly. Researchers in artificial intelligence have
good reason to avoid publicity hype; it damages the credibility of the entire scientific
community. Naturally, implementation issues will change rapidly during the next few years,
but this state of flux justifies bringing the systems to the demonstration stage. Until the
scientists are more aware of the real-world demands placed upon ITSs, many of the
limitations cannot be reduced. Research must therefore be conducted in appropriate
educational or training settings. The emphasis should be on evaluating some phases of
these emerging tutors in the real world and on measuring their effect on their intended
users.

The demands placed upon ITS developers are extensive. However, the science is
indeed in its early years, and as more systems are built and implemented, the skills of the
designers will improve drastically. Obviously, the technology will be ever changing and the
development of ITSs will continue to require the effort of knowledge engineers, subject
matter experts, computer programmers, and specialists in the science of human factors.
These people ensure the e%cacy of a necessarily complex system. Johnson offers a word of
advice: "Eeep the need for active involvement of the domain expert throughout the
research and development cycle" Many times, the domain expert may not feel or
understand the need for some alien, automated teaching machine; yet much of the success
of an entire ITS project depends on the cooperation between the domain expert and the
knowledge engineer.

Providing valuable information is only one of the contributions domain experts make
to an ITS project. They also can identify criteria for selecting appropriate ITS instructional
objectives. }ohnson presents several characteristics that help identify candidates for
applications areas: (a) high flow of students, (b) low availability of instructors, (c) expensive
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real equipment, gd) remote site training, (e¢) unavailable real equipment, (f) high public
visibility, (g) unsate real equipment, (h) high recurrent training volume.

These criteria for selecting appropriate applications for tutoring suggest domains
that are complex and technical by nature. For example, maintenance of expensive,
dangerous, and sensitive equipment is an excellent proving %;round for ITSs. The intelligent
components of the system allow learners to explore the environments and use the
information conveyed by their instructors. Military technical schools are also prime
candidates for ITSs. No other organization can furnish the sheer numbers of students who
are available for relatively short periods of time. Not only are the requirements for the
trainees quite rigorous, but also the obligations and course demands felt by the instructors
are overwhelming--the task being to teach students from a myriad of backgrounds the
competencies and skills for a particular occupation. Training in personnel, procurement,
logistics, and space operations are all important domains for demonstrating that artificial
intelligence approaches to training are both needed and effective. Finally, industrial settings
also present an excellent opportunity for testing ITSs in the real world, and especially for
testing computer-assisted, on-the-job tools in which the "intelligent coach" is an embedded
feature, not an independent entity.

Johnson’s bottom line is simply this: if ITSs are to reach their promise, then the labo-
ratory systems must operate and survive in the real world.

VII. ITS EVALUATION

David Littman and Elliot Soloway describe what has emerged as a serious gap in the
ITS literature--evaluation methods and quality control. Obviously, an intelligent tutor must
be evaluated so that one knows how good it truly is, and the evaluator must be able to
articulate why such systems are good or bad. To date, designers and evaluators have yet to
establish guidelines t%r use in judging a system’s worth. In fact, evaluation is the aspect of
the intelligent tutoring methodology least written about. Science calls for empirical testing
of systems, theories, and models. Intelligent tutors have not, for the most part, met this
requirement of the experimental method.

Both formative and summative evaluations are important in evaluating instructional
products. Since the instructional impact of an ITS, that is, its summative evaluation, is
critically dependent on how well it was designed and built, Littman and Soloway properly
place primary emphasis on formative evaluation and a strategy for formative evaluation
specifically suited tor ITSs.

Formative evaluations take place during the development of a system. As data are
collected and feedback received, scientists make changes. This ongoing process can involve
any of the modules in an ITS. Advice may come from the knowledge engineers, the subject
matter experts, and from early trials with potential users of the system. The system engineer
can circumvent bugs that would have occurred and anticipate other undesirable behavior
throughout the program.

Littman and Soloway emphasize the need for developing a systematic approach to
formative evaluation of ITSs, and they outline a two-part methodology for performin
formative assessments. The first part, external evaluation, focuses on the impact of the IT.
on students’ problem-solving processes and is based on explicit models of how students solve
problems. Student modeling techniques are used to identify the kinds of problems students
should find hard to solve and easy to solve. An ITS can then be evaluated according to how
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well it teaches students the specific skills they need to solve problems. The effectiveness of
the system is determined through measurement of observable phenomena that occur during
the learning grocess. Instructional experts should be able to recognize these overt signs and
determine whether or not the intended outcome was achieved. External evaluaion can
make rigorous testing possible. Because student modeling techniques capture how students
solve problems, those techniques can be used to predict the ease or difficulty of additional
problems and the knowledge necessary to solve them. The performance of students actually
solving these problems can be compared to the predictions.

The second formative evaluation method, internal evaluation, addresses the question
of why the ITS behaves as it does. It involves analysis of the architectural components of the
ITS and the way these components respond to input values. Littman and Solowa
recommend that their internal evaluation answer three questions. First, what does the IT
know? Second, how does the ITS do what it does? Third, what should the ITS do?

Littman and Soloway discuss many of the lessons their research }gj{rm&) learned in
applying ideas for external and internal evaluation to an ITS called, PROUST, a LISP
program that finds the nonsyntactic bugs in PASCAL programs written by students and then
tutors the students about these errors. During the external evaluation, the PROUST
research group used its cognitive model of novice programming to determine whether
PROUST helped students acquire programming skills. One conclusion drawn from that
evaluation effort was that simply counting the number of answers a student got right or
wrong did not provide a useful measure of the effects of PROUST on novice programmers.
It appeared that a more fine-grained analysis was necessary. Therefore the evaluation
focused on PROUST’s impact on specific "micro” problem-solving skiils such as students’
ability to determine whether a computer program is protected against certain invalid input
data.

The kind of evaluation Littman and Soloway propose has some intriguing
implications. One is that evaluation can help designers identify the kinds of reasoning
capacities their tutorial systems must have. For example, the PROUST evaluation
uncovered a need for the system to reason about how students name variables in their
programs. Without this reasoning capacity, the program was unable to completely
understand programs that humans find very easy to understand. When this capability was
added to PROUST, its tutorial performance was noticeably improved. Thus, evaluation can
have a very real impact on the design of tutorial systems.

VIII. TOWARD KNOWLEDGE-BASED EDUCATIONAL SYSTEMS

With only twenty ITSs scattered throughout the literature, a well-understood
technology for ITS development cannot be expected. More experience is needed, more
ITSs need to be built in exploration of the possibilities. However, the education and training
communities can expect high payoffs only when an ITS technology does formally emerge.
So, more ITSs need to be built not only for exploration, but for determining a generalizable
body of knowledge about how to build ITSs. This development will not be a simple task.
What is clearly understood, however, is that such systems will require seven kinds of
expertise, at least. This expertise pertains to the components that must be integrated as the
foundation for ITSs:
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1. content expertise in the expert module,

2. diagnostic expertise (determining what learners know and need to learn) in
the student diagnostic module,

instructional and curriculum expertise in the instructor module,

expertise in creating instructional environments,

3

4

5. human-computer interface expertise,
6 implementation expertise, and

7

evaluation expertise.

These components comprise the anatomy of ITSs and together provide the educational
community with a basic conceptual model for designing, developing, deploying, and
evaluating machine tutors.

It is not easy to integrate all of this knowledge in a single delivery system. The hope
of achieving, through artificial intelligence, a rich, interactive, flexible, real-time capacity to
support learning is the basic motivation for research and development in ITSs. ITSs
promise not only to help people learn how to perform complex tasks better, but also to
reveal how people learn. This collection of essays examines the ITS’s anatomy and proposes
two things: (1) achievable ITS capabilities for the near term and (2) fundamental research
questions that must be answered along the way toward more robust and effective,
knowledge-based educational systems.
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CHAPTER 2

THE EXPERT MODULE

John R. Andcrson
Professor
Department of Psychology
Carnegic-Melion University

Intelligent tutoring systems, by their name, arc supposed to bring intelligence in some way to
the (ask of computer-based instruction. There arc two key places for intelligence in an ITS system.
One is in the knowledge the systcm has of its subject domain. The second is in the principles by
which it tutors and in the methods by which it applies these principles. Clearly, human tutors are
cffective only when they possess both kinds of intelligence; lack of eithcr component leads to
instructional ineffectiveness. Humans cannot tutor effectively in a domain in which they are not
expert, and there are also inarticulate experts who make terrible instructors,

The focus of this paper is on the cxpert module of a tutor that provides the domain
intelligence. In my view, this is the backbonc of any ITS system. A powerful instructional system
cannot exist without a powerful body of domain knowledge. Frequently and perhaps typically, the
expert modules in ITS systems are incompicte, and as a conscquence, they can provide only part of
the instruction required in the domain. All cxisting ITS systems nced to be supplemented by human
tcachers,  So, for instance, Steamer (Holtan, Hulchins, & Weitzman, 1984), which is used to train
engincers about stcam propulsion plants, knows a grcat deal about the mathematical properties of
stcam but rather little about how to operatc a stcam plant. As a conscquence, Stecamer provides only
part of the instruction necessary to operate such plants, Nonctheless, it is judged to provide an
important componcnt of the instruction.

A powcrful expert module must have an abuadance of knowledge. This is ccrtainly the lesson
from the expert sysicms work in artificial intelligencc. It is also the Icsson from the study of human
cxpertisc, where experts are invariably people with many ycars of ecxperience. Hayes (1985)
investigated what it takes to achicve levels of performance commonly ascribed to geniuses in areas
ranging (rom mathcmatics to music. He determined that no genius produced a truly exceptional work
without at Icast tcn ycars of cxpericncc. Presumably, these ten years of cxpericnce were required for
cnough knowlcdge to accumulaic to permit the cxceptional performance.

It should be cmiphasized that a great deal of cffort needs to be expended to discover and codify
the domain knowlcdge. The shecr amount of knowledge required in most complex domains ensures
that developing the expert module will always be labor intensive.  As techniques of intelligent tutoring
cvolve, authoring systems might be capecied to assume much of the work involved in tutoring.
However, authoring systems will ncver do the work of discovering and codifying the domain
knowledgc. Already, we cstimate in our applications to programming and mathematics that over 50%
of our cffort gocs into cncoding thc domain knowledge. This proportion will only increase as other

componcnts beccome morc aulomaled.

Having decided that we nced to encodc inlo the system a large and powerful body of
knowledge, we must confront thc problem of how to cncode that knowledge. There are basically
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threc options. The first is to try to find somc mcans of computing that knowledge that does not
requirc our actually codifying the knowledge that underlics human intelligence. For instance, a
system can use mathematical cquation-solving, which produces through numerical processes what
humans achieve through symbolic processcs.  SOPHIE (Brown, Burton, & deKlcer, 1982), for
cxample, used the SPICE simulator for clectronic circuits. This system performs its calculations by
matheinatical relaxation tcchniques. It does not have human knowledge of electronic currents, but it
can still reason about them by simulating them with its mathematical model.

The second possibility is basically to go through the standard stages of devcloping an expert
system. This involves cxtracting knowledge from a human cxpert and devising a way of codifying and
applying that knowlcdge. Although the knowledge comes from a human, the way it is applicd does not
have to correspond to the way thc human expert applics it.

The third possibility is to go onc step further and make the expert module a simulation, at
some level of abstraction, of the way the human uses thc knowledge. This is clearly the most
demanding approach to developing an cxpert module, but 1 will argue that cxperience shows this
approach to be essential to high-pcrformance tutoring systems.

In general cxpert modules cannot be rcvicwed in the abstract. It is nccessary to understand
how they will fit into an ovcrall tutoring system. It certainly is the case that what is casy for the
cxpert module considered in isolation is not casy for the tutoring system in total. Thus using a set
of mathematical equations, although expedient, would make it cxtremely difficult to generate articulate
instruction. Figure 2.1 illustrates the relationship 1 perccive between ease of development and

pedagogical effectiveness.

In what follows, the three approaches to the cxpert module will be reviewed, giving the
greatest emphasis to the cognitive modeling approach, which lends itself most casily (o powerful
tutoring methods.

I. RELATIONSHIP OF EXPERT MODULES TO EXPERT SYSTEMS

Before analyzing the different types of expert modules, it is worthwhile to consider their relationship
to the expert systems of artificial intelligence (see Hayes-Roth, Waterman, & Lenat, 1983). The first issue is
to define an expert systcm. There are two notions of expert systems, one that is tied to a certain methodology
and a second that is criterion-based. A "knowledge engineering” methodology has arisen for developing expert
systems, and it involves deploying human-like knowledge in nonhuman ways. When I refer to expert systems, |
refer to products of this methodology. These are sometimes referred to as first-generation expert systems
because they tend to be narrow and brittle. Another definition would be criterion-based: Any system that
achieves high-quality performance could be classified as an expert system. Thus, because any kind of expert
module in an ITS must be capable of doing a complex task proficiently, it would be considered an expert
system if they model complex, demanding problem-solving. The reason I am not using the criterion-based
definition is that it does not enable me to distinguish between the expert module and expert systems.
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Expert Module and the Effort of Constructing It.
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It is particularly important here to consider what have been referred to as second-generation expert
systems.  Thesc sysicms have a morc fundamicntal undcrstanding of the domain and are not so
narrow or brittle. One does not yet get thc samc practical performance from these systems, but they
arc often viewed as the hope of the future. Systems of this kind will be discussed under the category
of qualitative process models, a special kind of cognitive model.  Qualitative process models are
concerncd with reasoning about the causal struciure of the world. In actual fact, rescarch in
qualitative process models is only somctimes coucerncd with cognitive fidelity ; however, the emphasis
here will be on research which does strive for cognitive fidelity.

Figure 2.2 illustraics some of the set relationships among the concepls we have defined so far:
cognitive modecls, black box models, expert systems defined by methodology, expert systems defined by
critcrion, qualitative process models, and the cxpert module of an ITS. As can be seen, the
critcrion-based definition of an expert system is sufficicntly encompassing to include cverything except
these cognitive modcls that concentrate on getting the details of some bechavior correct.  Black box
models, methodologically defined cxpert systems, and cognitive models all intersect with the expert
module of an ITS.

Work on expert modules could polentially increase the range of tasks that can be solved by
computers.  Given the criterion-bascd definition, fundamcntally expanding the boundaries of what can
bec donc by expert systems may be the long range conscquence of the cognitive modeling approach
that T will be advocating. That is, it scems that a rcasonable mcthodology for acquiring a working
cxpert system is to make a running simulation of a human expert.

This being said, it must be pointcd out that no cognitivc models to date have outperformed
cxpert systems developed with the knowledge-engineering methodology.  So far, the constraint of being
truc to human bchavior has been more a burden than a stimulus,

By decfinition intclligent tutoring systcms can only bc built for domains for which expert
systems (criterion-dcfined) exist. This then poses an inferesting question: Why build tutors to teach
topics for which wc already havc expert systems to perform the task? Even if we are faced with a
new domain requiring that a new expert module for our ITS be built, why not just quit at the expert
module? There are three standard answers.

(1) The neced for robusiness. It is generally considered desirable that humans be able to
perform functions that machincs perform just in case thesc machines break down or arc temporarily
inaccessible.  Thus, even though calculators arc common, we teach our children basic arithmetic
skills; and even though spclling correctors exist, it is considercd valuable to know how to spell
accurately. Presumably, this need for robustiness is cspecially strong in military domains.

(2) To establish prerequisite knowlcdge. Tutors can tcach students knowledge that is often a
prerequisite lo learning skills that an cxpert system cannot acquire. Thus, we need to tcach calculus
problem-solving skills (Kimball, 1982) as a prercquisitc (o creating Ph.D. physicists. We need to
tcach basic LISP programming skills (Reciscr, Anderson, & Farrell, 1985) as a prerequisite to using
LISP for artificial intelligence programming. In cffect, tutors can facilitate students’ mastery of basic
skills before they lcarn advanced skills. Because the tutor cannot tcach the advanced skill, a premium
is placed on having a tutor that smooths the transition from the tutoring cnvironment to lcarning on

one’s own,
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(3) To teach part of a skill. A corollary of the previous answer is that tutors can
sometimes teach part of a skill if not all of it. So, for instance, the Geometry Tutor
(Anderson, Boyles, & Yost, 1985) can tutor the generation of proofs but not their construction
because generating proofs is much more tractable than creating arbitrary constructions., We can
therefore provide tutors for a high-school geometry course. A variation on this is that we can
use the partfal expertise of a system to provide partial feedback. So for proof systems that are
too complicated to build into a viable expert system, we can still tell a student whether a step
in a proof if logically correct although we cannot suggest the proof itself. Thus because we
have the necessary expert module, logical validity can be tutored, but the same is not true for
proof generation.

. BLACK BOX MODELS

A Dlack box expert is onc that gencratcs the correct input-output behavior over a range of
tasks in the domain and so can bc used as a judge of corrcctness. However, the internal
computations by which it provides this bchavior arc cither not available or are of no use in delivering
instruction. The classical example of a black box modcl is the original work on SOPHIE (Brown &
Burton, 1975). It used a general-purpose clectronic simulator called SPICE 11 (Nagel & Pederson,
1973) and was intended to teach students how to troubleshoot faulty clectronic circuits. The tutor used
its simulator to dctermine the rcasonablencss of various mcasurcments that the student would make in
troubleshooting the circuit. Because the SPICE simulator worked by solving a sct of equations rather
than by human-like, causal rcasoning, it was not possiblc for SOPHIE to explain its decisions in
detail.  Later versions of SOPHIE (Brown, Burton, & dcKicer, {982) utilized a causal model of
circuits to deal with this deficicncy. We will discuss this causal model under the category of
qualitative process models.

One could imagine a black box ecxpert for the game of chess that found good moves by
scarching over millions of sequences of chess moves--something that human chess experts clearly do
not do. Such a sysiem could provide good advicc about what move to make, but it could not explain
why. A similar idca is uscd in the WEST program (Burton & Brown, 1982), in which a black box
cxpert docs an exhaustive scarch of the possible moves and detcrmines the optimal move given a
particular strategy.

Clearly, such an cxpert can be uscd in a simple reactive (utor that simply telis students
whether they are right or wrong and possibly what the right move would be. Quite possibly such a
reactive tutor is more pedagogically effcclive than no tutor. The notion of a black box plus reactive
tutor is interesting becausc it suggests a chcap way of converting off-the-shelf expert systems into
tutors. Note that it is not limited to black box experts, but could bc used with any type of expert
system (criterion definition).

However, the intclligent tutoring paradigm is bascd on the belicf that what a tutor says is
critical and that it is helpful to say more than just "right,” "wrong,” and "do this.” The question is
how to build a more articulate tutor around an cxpert system when knowledge of that system is not
accessible,. One way to build such a tutor is with a methodology dubbed issue-based tutoring by
Durton and Brown (1982). The basic idca is to make paticrns defined on the students’ behavior and
the experts’ behavior and to attach instruction to thosc patterns. For instance, one issuc recoghizer
in WEST is evoked when the expert chooses to bump and the student does not. (See Figure
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Figurc 2.3. Tutoring of Bumping in WEST.

2.3.) It interrupls with an cxplanation of the uscfulness of bumping. In WEST the responsc of the
issuc-based recognizers not lo single cvents butl paticrns of cvents cnables the system lo respond in

some fairly sophisticated ways.

Figurc 2.4 illustratcs thc basic idea of issuc-oricnted tutoring based on obscrving the surface
behavior of the cxpert and the student. Issuc-oricnted recognizers look for some configuration of the
two surface behaviors that indicatcs that a tutorial issuc is ripe for discussion. This idea of issue-
based tutoring is very powcrful and nced not be restricted to black box modules. It is appropriate
for other kinds of cxpert modules as well.  So, for instance, in the Geometry Tutor (Anderson,
Boyle, & Yost,1985) an issuc rccognizer is invoked whenever the student uscs an cquality statement for
a premisc when a congrucace statement is required.  Attached to the issue recognizer is a dialogue
that reinforces the difference between equality and congrucnce.  Although this tutorial interveation could
have been attached to the internal structure of our cxpert module (and some of the publications arc
written as if they were), it proves to bc more cconomical and cfficient to code this intervention as an

issue recognizer defined on surfacc bchavior.
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Figure 2.4. The Pattemn Recognition That Undetlics Issue-Oriented Tutoring.

However, as Brown and Burton recognized in their later versions of SOPHIE, there are things that
cannot be tutored by such surface-level issue recognizers. Access to the internal structure of the expert is
necessary for creating appropriate explanations. For instance, a standard mistake in geometry is to fail to use
the reflexive rule of congrucnce when appropriate. (Because the reflexive rule can apply to every object in the
diagram, there is a grcat potential for overusing it, and students appear guarded against overuse by never using
the rule at all.) A tutoring system cannot explain to the student why the rule is appropriate in a particular
context without access to the chain of reasoning that led the expert to conclude that the rule was appropriate.

Figure 2.5 illustrates the contrast between surface-level tutoring, which can be implemented with
issue-oriented recognizers, and the kind of deep-level tutoring that can be implemented if there is access to
the internal reasoning of the expert module. At the surface level we can note the legal problems with the
student’s response (a) and point to the correct behavior (b). However, if we modcl the student’s error, we can
explain the misconception to the student (c) and motivate the system’s choice (d). Again, on the belicf that
explanation is helpful, dccp-level tutoring should be more effective than surface-level tutoring,
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requires two congruent sides and
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congruent angle."

(b) “"Try to prove AB = AB"

(c) "“To apply the side-angle-side
Deep Level postulate you have to establish AB
Is congruent to itself. You cannot
simply assume it

(d)  "Whenever you are trying to
prove lriangles congruent it is @
good i1dea to prove that shared
A sides are congruent to themselves.
This will give you a pair of
corresponding paris.’
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Figure 2.5. The Conitrast Between Surface-Level and Decep-Level Tuloring.
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HI. GLASS BOX LEXPLRT SYSTEMS

A sccond category of cxpert modules are the cxpert systems that arc prototypically gencrated in the
knowledge-cngineering tradition.  The basic mcthodology of building these cxpert systems involves a
knowledge cnginecr and a domain cxpert who can identify a problem area and its scope, enumcrate
and formalize the key concepts in the domain, formulalc a system to implement the knowledge, and
then iteratively (est and refine that system. ‘These systems are characterized by the great quantity and
human-like naturc of knowledge that is articulated.  The knowledge acquisition process is recognized
as the timc-consuming component of building expert systems. and the one that great effort is being
expended in an attempt to automalte.

By the very nature of the enterprise, the expert system that emerges from this excrcisc is
going lo to be morc amenable to tutoring than a black box model because a major component of this
expert system is an articulalc, human-like represeniation of the knowledge underlying expertise in the
domain. The expert system methodology in its variations has been very successfully used to tackle a
wide range of inteliectual behaviors. There arc cxpert sysiems for interpretation, prediction, diagnosis,
design, planning, moniloring, debugging, rcpair, and control. lndeed, the expert system methodology
is onc way of incorporating tutoring cxpertisc when the domain expert is also an expert teacher.
This scems to be Stevens, Collins, and Goldin's (1982) approach, for instance, to the development of
tutors. Curiously, thcre have been relatively few examples of the classic expert sysicms being used
as the expert modules of tutors. One cxample might be the use of MACSYMA by Genescreth (1982)
although it is questionable whether MACSYMA is really an cxpert system, methodologically defined.
The classic and wcll-analyzed case is GUIDON by Clancey (1982) which “is based on MYCIN.
MYCIN (Shortliffc, 1976), whose domain of cxpertisc is the diagnosis of bacterial infections, is onc of
the best known of the expert systems. It consists of 450 if-then rules, such as the one in Figure 2.6,
which encode bits and picces of the probabilistic rcasoning that underlics medical diagnosis.

IF

The infection which requires therapy is meningilis
Organisms were not seen in the slain of the culture
The type of infection is bacterial

The patient does not have a head injury defect

The age of the patient is between 15 and 55 years
THEN

The organisms that might have been causing the
infection are diplococus-pneumoniae(.75) and
neisseria-meningitidis(.74)

Figurc 2.6. A Typical MYCIN Rule.

The basic instruction in GUIDON is driven by t-rules, which are an cxtension of Burton and
Brown's issuc-orienicd rccognizers. T-rules (like the issuc-oricated recognizers) are defined on a
differential between the cxpert’s Lehavior and the student’s behavior, but they are also defined on the
expert's reasoning processes.  An example of a t-rule is given in Figure 2.7. Note that this rule
refers to entitics in the internal structure of the cxpert such as rules and goals. The black box has

been opened up.
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IF

The number of factors appearing in the domain

which need to be asked by the student is zero

The number of subgoals remaining to be determined
before the domain rule can be applied is equal to 1
THEN

Say: subgoal suggestion

Discuss the (sub)goal with the student in a
goal-directed mode

Wrap up the discussion of the domain being considered

Figure 2.7. An Example of GUIDON'S Tutorial Rules (Clancey, 1982). Reprinted with
pcrmission of Academic Press, © 1982.

Unfortunately, the actual rcasoning process used by MYCIN to deploy its knowledge, an exhaustive
backward search, is not the way thc knowlcdge is deployecd by humans. Figure 2.8 iflustrates a
fraction of that structure. This mismatch between the control structure of MYCIN and that of
humans madc an explanation of what to do next difficuit. In addition, MYCIN's highly compiled
rules of rcasoning were difficult for GUIDON (o justify. Also, many of the MYCIN rules, although
appropriatc for cxperts, were (0o complex to be directly taught to novices.

All of these difficultics lcd to the desigh of NEOMYCIN, in which an attempt was made to
impose a differcnt control structurc on the domain knowlcdge. The control structure is now a
domain-independent set of rules about how to use the domain rules. The currently active set of
hypotheses is comtained in a ncw data structure that is callcd a diffcrential and that is designed to
reflect some of the characteristics of human short-lcrm memory. Also, a different data structure was
used for the t-rules to facilitatc cxplanation.

The fundamental lesson of GUIDON is that for tutoring systems (o be (ruly effective, it is
necessary to pay attention not only to the knowledge in the expert module but also to the way it is
deployed.  Many expert systems, although making usc of human-like knowledge, deploy that
knowledge in (he exhaustive manner so typical of computcrs. To be truly appropriate for tutoring,
the expert module must deploy its knowledge according to thc same restrictions as a human does.
This principle leads us to the cognitive modeling approach.

Clancey's work was a watcrshed in development of intclligent tutors becausc it illustrated that
tutors were going to be scriously limited if they simply ported expert systcms from artificial
intelligence.  Conscquently, subscquent research has focused on the use of cognitive models. In
many ways this rcsearch decision was a good onc, but it has led to a neglect of practical issues such
as how off-the-shelf expert systems might bc used. It would be comforting if therc had been other
projects besides Clancey’s that cxplored cxtensively the usc of expert systems for tutoring.
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IV. COGNITIVE MODLLS

The goal of the cognitive modcling approach is to cffectively develop a simulation of human problem
solving in a domain in which the knowledge is decomposcd into mcaningful, human-like components
and deployed in a human-like manner. The merit of this approach is that it gives us the expert
module in the form that can bc most casily and decply communicated to the student. However, therc
arc rcal costs in this approach. First of all, developing cognitive models is a more constrained and.
time-consuming task than simply developing expert systcms. Fortunatcly, there have been dramatic
improvements over the past ten ycars in the ability of cognilive scicnce to develop such models.
These improvements have resuflcd at Icast in part from borrowing concepts from the expert systems
work. A second difficuity is that cunning the computations of cognilive models can be quite
computationally expensive. Fortunalely, increasing computational power is diminishing this concern.
Additional tcchniques for dealing with computational costs will be addressed later in the chapter.

Another complexity is the issuc of the amount of dctail to bc incorporated into a cognitive
model. Many of the factors that arc incorporated into some psychological simulations, such as the
exact mcchanisms of short-term memory search, seem irrclevant for tutoring.  Faithfully modeling
phenomena in an expert modulc adds an unnccessary computational burden. The question ariscs,
which psychological components are csscntial for purposes of tutoring and which are not. 1 have
argucd (Anderson, in press) that tutoring systcms depend on cognitive assumptions at the algorithm
level and not at the implementation level. The algorithm level rcfers to high-level specification of
mental computation that ignores issues of ncural implementation. The obvious analogy is to a
program specificd in a high-level programming language that docs not address issues of machine
implementation. The best excmplars of algorithm level systems are the problem-solving models (e.g.,
Newell & Simon, 1972).

In discussing cognitive systems it is uscful to distinguish between three types of knowledge that
need to be tutored. There are domains like calculus problem solving where the main knowledge to
bc communicated is procedural; that is, knowledge about how to perform a task. There are domains
likc geography where the tutorial goal is to convey declarative knowlcdge in the form of a set of facts
appropriatcly organized so that one can rcason with them. Declarative knowledge contrasts with
procedural knowledge in that it is morc gencral and not specialized for a particular use. Third, there
is causal knowledge in the form of qualitative modcls, about a devicc that allows one to reason (in a
task like trouble-shooting) about the bchavior of (hat device. 1 have listed these types of knowledge
in the order that they will be discussed. Coincidentally, the current success of our cognitive theorics
in dealing with these types has followed the same order. These classifications also have implications
for the types of curriculum and instruction used to impart them, which is discussed by Halff (scc
Halff's chapter, this volume).

V. PROCEDURAL KNOWLEDGE

Our relatively advanced ability to model the procedural knowledge underlying human problem solving
probably owes a lot to the importation of idcas from cxpert systems. Almost uniformly, the standard
represcntational formalism has been some kind of rule-based system just as in expert systems.  This
rulc-bascd approach is taken in the LISP Tulor (Rciscr, Anderson, & Farrell, 1985), the Geometry
Tutor (Anderson, Boyle, & Yost, 1985), Algebra (Brown, 1983), BUGGY (Brown & VanLehn, 1980;
Burton 1982), and the LEEDS modcling system (Slceman, 1982) among others. The dominant type
of rulc-bascd system fakes the form of production systems, which arguably provide good models of
human problem solving (Andcrson, 1983; Ncwcll & Simon, 1972).  Although there are many
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variations on production sysiem models, they all involve a sct of if-then rules matched lo a working
memory of facts. The working memory cmbodics somc of the basic short-term memiory limitations of
the human. The production rulcs with their recognize-act cycle capture the basic data-driven character
of human cognition. One of the recent advances in production system models has been a set of
idcas for modeiing human learning within these models (Anderson, 1983; Holland, Holyoak, Nisbett,
& Thagard, 1986; Laird, Rosenbloom, & Ncwecll, 1986, Langley, 1985; VanLehn, 1983). This is
an cxciting potential for intelligent tutoring systems because of the prospect that the tutoring
component can make ils decisions by reference to the simulation of the studenmt lcarning. Although
this is an exciting possibility, no current tutoring systcms actually usc a learning simulation in this
way. This it largely because these learning components arc rccemt and tend to be very expensive
computationally.

An exemplary set of proccdural rules, shown in Figurc 2.9, represent the skill underlying
multiple-column subtraction in the Brown and VanLehn model of subtraction skills. They make the
point that the underlying knowledge is very use-specific.  Although this knowledge is derived from the
basic properties of addition, the actual rules arc quite specific to subtraction and would not gencralize
to addition. Thus, for instancc, we have rulcs about borrowing rather than rulcs about carrying,
cven though borrowing and carrying arc based on the samc abstract rulcs of arithinctic.  The choice
of using a procedural knowledge representation involves deciding whether such a  use-specific
representation of the knowlicdge is appropriatc. It certainly is the appropriate model in the casc of
human subtraction skills because they have very little to do with addition skills.

The Brown and VanLchn work illustratcs onc use to which we can put procedural
rcpresentations.  Brown and VanLechn proposc that student s make errors when they try to repair their
procedurcs at the impasses created by the missing production rules. By assuming that specific
instanccs of these rufes arc missing, we can predict such students’ crrors.  Extending a rule-based
model to predicting crrors puts an additional demand on its psychological reality. The rules in such
a system now must capturc the units of human knowledge becausc loss of the rules must correspond
to human errors. If the rules were not the units of knowledge, then their loss would produce errors

that are not scen in human behavior.

Their modularity is onc of the wmajor advantages of production rules for purposes of
instruction: each production rule is an indcpendent picce of knowledge. This means that a rule can
bc communicated to the student independently of communicating the ftotal problem structure in which
it appears. This is not to say that production rulcs are context frce. Rather, they specify cxplicitly
that part of the context that is relevant. So, for instancc, if a production rule for using vertical
angles in geometry makes reference to a goal of proving angles congrucat, reference can be made to
that feature of thc problem and only that feature in explaining the rule: "When you are trying to
prove triangles congruent and they form vertical angles at one of their vertices, it is a good idea to
provc these angles congrucnt by vertical anglcs. This will yicld a pair of congruent corresponding
angles which will help you prove the triangles congruent.” A frequent problem with earlicr
production rule models (Anderson, 1976; Newcll, 1973) is that contextual contraints on the rules were
not transparent. Rules had special tests built into their left-hand sides that constrained when they
would apply; but it was difficult in looking at such rulcs to imagine when thosc tests would be
satisfied.  The current generation of goal-factored production systems (Anderson, 1983; Laird,
Rosenbloom, & Newell, 1986) offer a substantial solution to this problem by making explicit reference
in their conditions to goals that the production rules arc relevant to. These goals, being structures
with well-defined semantics, facilitatc thc process of communicating to the student the relevant

information aboul contextual constraints,
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Another advantage of the niodularity of production rules is that we can use the rules to
represent the student’s knowledge stale.  That is, the student's knowledge state can Le diagnosed as a
set of production rules. We can then use curriculum sclection techniques, such as were pioneercd
with BIP (Barr, Beard, & Atkinson, 1975; Westcourt, Beard, & Gould, 1977), in which problems are
sclected to cxercise instructional units (hat the student has uot mastered. In contrast to BIP,
however, the problem selection can be defincd in psychologically rcal units rather than by somewhat
arbitrary topics. In recent work with the LISP Tulor (Anderson, in press), we have found that the
underlying production rules scem to be learned systematically and independently of onc another.
Selecting problems 1o cxcrcise those productions diagnosed to be weak lcads to improved learning.

Model Tracing

One of the major advantages of the rule-bascd approach is that it makes possible the
implementation of a tutoring mcthodology calicd model tracing. This is a technique used in WUSOR
(Goldstein, 1982), in Kimball's integration tutor (Kimball, 1982), in Spade (Miller, 1982), as well as
in our own Geometry and LISP Tutors (Andcrson, Boyle, & Yost, 1985; Reiscr, Anderson, &
Farrcll, 1985)., In model tracing we try to place the student's surfacc behavior in solving a problem
in correspondence with a scquence of productions that arc firing in the internal student model. This
correspondence then can be used to place an interpretation over the student's surface behavior.
Clearly, the richness with which the student’s behavior can be interpreted will map onto the richuess
of subsequent instruction. In our own rcscarch, which has a strong commitment to immediate
fcedback, the major function of such a model trace is to provide fecedback on errors as closc in time
to the student’s commission of thesc crrors as possiblc. However, this is by no means the only
function of model tracing, nor is it thc only function for which model tracing bhas been used.
Indeed, T would say our usc of it for immediate fcedback has been relatively unique.

Although it is nicc to be able to interpret a student's thinking at every step through the
problem solution, model tracing crcatcs a  number of demands which are  quitc  stressful
computationally. The major stress derives from the non-dcterminism of the underlying student model.
Typically, at each point there arc a number of corrcct or incorrect produclions that can fire. The
combination of a few layers of production firings creatcs a space of thousands or millions of possible
scquences of production firings. Managing (his space of possible interpretations is naturally easier in
the presence of a rich behavioral trace from a student.  Ideally, if cach production rule has an
observable consequcnce, then the non-dcterminism can be pared down at each cycle of the production
system. Providing such a rich behavior trace creates an interesting demand on the interface design.
Sometimes, however, cfforts to obtain a rich behavior trace can lead to awkward and artificial
intcractions. For instance, in some of our cndecavours we have ftricd to creale a trace by interrogating
students aboul thcir intentions at points of ambiguity.  Students rcport this to bec an annoying and
distracting [caturc of our tutors.

Even in the best of all possiblc worlds where each production has a behavioral consequence,
there arc problems of ambiguity in which multiplc sequences of production actions will generate the
same observed scquence of student behaviors.  This is a problem particularly when some of these
intcrpretations arc correct and somc arc in crror.  The tutor must cither dclay feedback until the
ambiguity is resolved or interrupt with distracting qucstions. For instance, supposc we have a student
who is trying to code whether a is less than 2% of ¢ and the student writes,
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(> (/ ac) .02).
At what point can we (cll the student (hat the choice "> is inappropriatc? Clcarly, nol when

it is typed becausc the student could be intending lo reverse the arguments.  As it turns out, the
ambiguity is not resolved when the division sign is cncountered cither, because the student could have

been intending

(> (/ ¢ 50.0) a).

The ambiguity is resolved only when the a is entered. Figure 2.10 is an attcmpt to illustrate a
small part of the problem spacc associated with this problem and the ambiguity in that problem spacc.
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Figure 2.10. Some of the Cotrect and BUGGY Code Sequences That a Student Might
Eater (o Determine Whether a Was Less Than 2% of c.

There arc also serious problems with the clficicncy of ruaning production systecms.  Despite
the recent advances in the OPS family of production systems they arc still not the world's most
cfficicnt computational formalism (Forgy, 1982). A critical fcaturc of any cxpert module is that it
run sufficicntly rapidly so that the student is not left wailing too long during its computations. Onc
solution is to build morc clficicnt domain-spccific production systems. In our own work we have had
o build such domain-specific production sysicms that were oplimized to (akc advantage of special

domain [caturcs.




Compiling the Expert Qut

Many formalisms for cxpert modules, including production systems, can be very expensive in
terms of time and space. This makes it difficult to dcliver tutorial instruction on economically feasible
machincs.  Onc way of dealing with this problem is to perform in advance all the possibie
computations of the cxpert for a particular problem and to storc them in some cfficiently indexed
scheme on disk.  This mecthod, which we call "compiling the expert out,” has been used with
success in some of our applications. The cost is that they can tutor only a specific set of problems
on which the expert has been run.  The dynamic ability to tutor any problem the student might enter
is lost. However, in somc applications this tradcoff may bc well worthwhilc.

VI. DECLARATIVE KNOWLEDGE

Both the weaknesses and strengths of proccdural knowledge representations are derived from the fact
that they arc use-spccific.  In some instances morc generalized declarative knowledge may be desired.
In many cases we want the students to understand the basic principles and facts of a domain and how
to reason with thesc generally, but arc not conccrned that the student become particularly facile at
any one application of the knowledge. These arc the situations that call for declarative knowledge
representations.,

It is not the case that the goals of procedural tutoring and declarative tutoring are mutually
incompatible. We might well want a student to be both facile with the rules of a problem domain
and articulate about thc justifications for the rules. This scems to be the case in the domain of
medical diagnosis, for instance (Clanccy, 1982). Another need for declarative tutoring is illustrated in
our LISP Tutor, for which we have crcated a special text book (Anderson, Corbett, & Reiser, 1986)
for teaching the declarative underpinnings of the procedural knowledge the LISP Tutor tecaches. It
clearly would have been better to have extended the LISP Tutor to cover what is in the text book.
In fact, it is part of our general theory of knowledge acquisition (Anderson, 1983) that knowledge
must start in a declarative form before becoming proceduralized.

The SCHOLAR project (Carbonell, 1970) was an carly example of a project whose goal was to
communicate information about South American geography. It was Carbonell's belicf that the
semantic nct representation of the knowledge base used in this project was close to the internal
knowledge structurc of humans. This belicf that was rcinforced by a fair amount of contemporary
experimental work (¢.g., Collins & Quillian, 1972). Figurc 2.11 shows a fraction of the semantic
nctwork Carbonell was working with. It consists of nodes representing various concepts like countries
and products linked by various relationships such as part-wholc or gencralization hierarchy, These
links were used to define certain fundamental inference processes on the network. For instance, the
system can concludc that Santiago is in South Amcrica because Santiago is in Chilec and Chile is in

South America.

Subsequent 1o Carbonell's work, knowledge representations with scmantic nets have become
considerably morc sophisticaled and have cvolved into framc and schema systems (Bobrow &
Winograd, 1977; Brackman, 1978: Goldstcin & Roberts, 1977; Minsky, 1975; Schank & Abelson,
1977; Stefik, 1980). However, the ceatral idea has remained the same: We want hierarchical
representations of knowledge structurcd such that flexible inference procedures on the knowledge base
can be defined. Note that, in contrast to proccdural representations, the knowledge base is separate
from the infercnce procedures that arc built on them. This clcan distinction has been somewhat
blurred by the use of “procedural attachments," in which various slots in the schema representations
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have procedures attached to them to definc how they should be filled. But we still have a
fundamental separation in a schema system between knowledge and control. This separation does not
exist in procedural systems.
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Figurc 2.11. A Portion of the Semantic Net in SCHOLAR (Carbonell, 1970). Reprinted
with permission of 1EEE, (© 1970.
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Carbonell's work has been continued by Collins (Collins, Warnock, & Passafuime, 1978;
Stevens, Collins, & Goldin, 1982). Figure 2.12 illustratcs onc of the schema representations
developed for cvaporation, which is part of the knowlcdge basc in the curriculum on rainfall, 1t is
basically a schema representation consisting of various slots and fillers. In this case, there are slots
for the actors in the cvaporation schema, for the factors that influence the amount of evaporation, for
the functional relationships among these factors, and for the result of evaporation. Bugs are created
by various fallacious ecntries in these slots. So, for instance, many people believe that the sun is
dicectly responsible for evaporation rather than that cvaporation is a [unction of the tcmperature of the
air mass and the water mass. This belief shows up as an crroncous filling in of the actor slot.
Another bug involving the actor slot of this schema is what Collins calls the "small-moisture-source”
-- the idea that any body of waler inclading a small pond is sufficient to produce rainfall.

Evaporation

Actors
Source: Large-body-of-water
Destination: Air-mass

Factors
Temperature(Source)
Temperature(Destination)
Proximity(Source, Destination)

Functional-relationship
Positive(Temperature(Source))
Positive(Temperature(Destination))
Positive(Proximity(Source, Destination))

Result
Increase(Humidity(Destination))

Fig;m: 2.12. A Schema Representation of Some of the Knowledge Underlying Our
Understanding of Bvaporation (Stevens, Collins, & Goldin, 1982). Reprinted with
' permission of Academic Press, ) 1982.

The implicit presupposition in tutoring such knowlcdge bascs is that the student already has the
general inference procedures to be able to rcasom about the knowledge and that the real task is
therefore (o represent the kaowledge in such a form that thesc inference procedurcs can be invoked.
At somc level this makes for a simple tutorial agenda; namcly, to determine what a student has filled
in at cach slot and to fill in the missing information and dcbug the misconceptions. The major
difficulty posed for tutoring systcms is that declarative knowledge cannot be run the way procedural
knowledge is, and so the criterion "if the student caa use it, he knows it" does not apply. For
declarative knowlcdge tutors it is typical to fashion and interpret complex natural language dialogucs.
To understand these dialogues it is nccessary to understand how students make infcrences from their
declarative data basc, and a good dcal of Collins' work has been devoted to just this (e.g., Collins,
Warnock, Aiello, & Miller, 1975).
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In contrast with tuloring procedural knowledge, tutoring declarative knowledge necessitates
facing up to the full complexity of mixed initiative dialogues. The student says somecthing that has to
be clarificd, which lcads the tutor to ask a question, to which thc student reacts with a question of
his own, cic. Onc of the functions of thc Socratic dialogucs promoted by Collins and others is to
tame this process.  Socralic dialogucs rcally give thc control to the tutor who asks a series of
qucstions to which the student is supposcd to respond.  In a true Socratic dialogue both instruction
and knowlcdge assessment are supposed to be handicd by asking questions. It might seem a bit
unnatural to instruct by asking qucstions, but therc arc proven psychological benefits to knowledge
that is gencrated rather than reccived (Bobrow & Bower, 1969). Morcover, asking questions cnables
the tutor to assess how well the instruction is being received.  Figure 2,13 presents a piece of the
Socratic dialoguc with Collins® WHY systcm. Note that the discussion takcs placc with respect to
specific cases.  So, for instance, in Figure 2.13, WHY does not dircctly ask the student whether
there is a posilive functional relationship between the temperature of the source and evaporation.
Instcad, it probes the student’s ability to apply this knowledge to thc Amazon.

WHY: Do you think the AMAZON jungle has heavy
rainfall or light rainfall?
(Ask ior a prediction about a particular case)
STUDENT: Heavy rainfall

WHY: Why does the Amazon have heavy rainfall?
(Ask for prior cause)
STUDENT: Because it's near the Allantic

WHY: Yes, the Amazon jungle is near the cquatorial
Atlantic. How does that alfect rainfall in the
Amazon jungle?

(Ask for intermediate causc)

STUDENT: The water in the current is warm.

WHY: Do you think that any place with mountains
has heavy rainfall?
(Form a general rule for insullicient cause)
STUDENT: Yes

WHY: Southern California has mountains. Why doesn't

Southern California have heavy rainfall?
(Pick a counler-example for an insuffient cause)

Figurc 2.13. An Examplc of a Socratic Dialoguc (Stevens & Collins, 1977.)
Reprinted with permission of Association for Computing Machinery, Inc., © 1977.
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Collins formulated a sct of tutoring rules for implementing the Socratic method. Figure 2.14
illustrates one that was involved in the qucstion at the end of the sample dialoguc. There are a
couple of noteworthy features about such rules for Socratic tutoring.  First, thcy have a fanily
resemblance to the issue-based rccognition rules we saw with the black box and expert models. Note,
however, that the conditions of such rules refer (o the underlying knowlcdge rather than to the
surface behavior of the expert.  Second, these rules involve a curious mix of knowledge assessment
and instruction. The rule in Figure 2.14 could be used to determine that the student is aware of all
the factors underlying rainfall but has just not mentioncd them, or it could be used to make the
student awarec of a ncw factor.  Lvoking this rulc docs not cntail a commitment to the intended
pedagogical outcome.

IF

The student gives an cxplanation of one or more
factors that are not sufficient

THEN

Formulate a general rule for asserting that the factors
given are sufficient

Ask the student if the rule is true

Figure 2.14.  An Examplc of a Rule for Socratic Tutoring (Collins, 1976.) Reprinted
with permission of Lawrence Erlbaum Assoc., Inc., Publishers, © 1976.

It should be clear that understanding natural language is the Achilles’ heel of any cffort to do
such declarative tutoring.  There have not been a great many of these tutors.  Collins’ and
Carbonell’s work is thc only nolable instance, and I think thc difficulty of the natural language
problem is the principal rcason why. This arca of intclligent tutoring is ccrtainly waiting for
fundamental progress in natural language proccssing.

Vil. QUALITATIVE PROCESS MODELS

A third category of cxpert module is concerncd with the knowledge that underlics our ability to
mentally simulate and reason about dynamic processcs. As noted carlier, this is an important
component of the ability to engage in trouble-shooting behavior, which involves reasoning through the

causal structure of a device to find potential trouble spots.

Models of qualitative reasoning are in a relatively immature state compared to the schema and
rule-based formalisms of artificial intelligence. A number of notablc research efforts are developing
such models (deKlcer & Brown, 1984; Forbus, 1984. Kuipers, 1984), but there is hardly an
established methodology for using them. deKlecr's work on envisionment is an intcresling case in
point because it evolved within the context of the SOPHIE project and the nced to communicate to
students the causal structure of an elcctronic circuit.

deKlcer and Brown divide the process of cnvisionment into constructing a causal model and
then simulating the process in this causal model. Tigurc 2.15 illustrates their conception of this
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process. The causal struclurc of the device is inferred from its topology by cxamination of the focal
inlcractions among componcnts.  The assumption is that this causality can be understood [focally, and
it is called the "no funclion in structurc” principlc.  When this principle is violated and description
of a component makes reference to the functioning of the whole device, there is a danger that that
componcnt will assume the funclioning of the device rather than cxplain it.  Having this causal
model, deKleer and Brown then usc a calculus to propagatc the behavior of the device through these

componcnis.  Much of the current work on qualitative modcls is conccrncd with various calculi for

such propagations.

L physical device L prediclions
description 4 o! struclure f
dovice lopology running: menlal simulation

component models

envisioning: l inferring causalily

envisionmenls: projection:
a I'm |
set of causal models| ™ selection > cavsal mode! |

Figurc 2.15. The Development of a Qualitative Simulation According to deKleer &
Brown (adapted from Weuger, 1987). Reprinted with permission of
Morgan Kaufmann Publishers, lnc, © 1987.

Figure 2.16 illustrates onc of thc devices, a pressurc regulator, which has been a focus of
deKlcer and Brown's work. It consists of a sct of components, such as a valve, which opcrate on
certain local inputs.  So, for instance, the valve operates so that the amount of water flowing through
it varics with the pressurc and the position of the valve control.  This rclationship is expressed by
what dcKlcer and Drown call a conflucnce, which is a constraint among variablcs. The confluence

for the valve is
’ . -
a0 ow dQll(vv) + dXp, 0

» H ~ M .
where di in.ont 18 the change in pressure,

dQ“(W) is the change in flow,

and dX, is the position of the valve conlrol.

The entirc device is modelled by a sct of such conflucnces.  Reasoning about it involves

tracing the constraints among the cquations.
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The psychological status of this work is quite ambiguous. As deKleer and Brown note, the
no-function-in-structure principle is constantly violated in human rcasoning. What they are trying to
develop is more on the order of a prescriptive model of thinking. A constraint in this prescriptive
model is apparently that it should be easy for humans to follow these prescriptions even if they
normally do not. Such a prescriplive model is ccrtainly appropriate as an expert module for an
intcligent tutoring system.

It is not clear to me whether qualitative models rcally involve a category of knowledge
fundamentally differcnt from procedural and declarative knowledge. It might be argucd that people
have a set of declarative knowlcdge structures for representing the form and function of various
devices and a set of procedures for rcasoning about the causal interactions among these devices.

-
T W/)W |
P

Pin smp OUT SMP

L. J

Figurc 2.16. dcKleer & Brown's (1984) Representation of a Pressure Regulator.
Reprinted with permission of Elscvier Scicnce Publishers, B.V., The Netherlands, © 1984.

The real diffcrence may not be in the knowledge type but in the indirectness of the knowledge
so represented. The end goal in applications such as clectronic trouble=shooting is not to have the
student correctly simulatc the causal intcractions in a circuit but to use that ability in service of the
problem solving involved in trouble~shooting.  Thus, one of the issues that ariscs in a tutoring
context is how (0 usc the qualitative knowlcdge in a larger problem-solving context. This issuc has
largely not been addressed in the work on qualitative rcasoning.
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As a consequence, how to include qualitative simulations in a tutoring paradigm has yet to be
worked out. Qualitative simulations can obviously be used in all the ways a black box model like
SPICE can, but this hardly justifies their development. There is the obvious potential for using them
in explanations in which the tutor would tell the student how it reasoned to a particular conclusion
about circuit behavior. White and Frederiksen (1986) at Bolt, Beranek and Newman use such
models to actually define the curriculum sequence. There is also a need for more psychological
study on how such process modcls arc actually used in troublc-shooting. While I think it is clear
that such models are used and that systems like deKleer and Brown's have at least a family
resemblance to human qualitative reasoning., 1 think we know virtually nothing about how humans
deploy these simulations to achieve their goals. Intcrestingly, there is a considerable body of negative
results in getting students to bring mental models to tasks such as trouble-shooting (Rouse & Morris,
1985).

The other possibility for qualitative models is to generate articulate simulations of a particular
system such as in the Steamer project or in SOPHIE. The simulation can illustrate the qualitative
transformations assumed in the qualitative simulation. The assumption is that there is a pedagogical
benefit to illustrating a process in the same terms as a student should use in reasoning about it.

VII. BASIC RESEARCH ISSUES

Although there has certainly been dramatic progress in our understanding of how to build the expert
module for a tutoring system, we need a great deal more basic research before construction of expert
modules can progress as an engineering cnterprisc. As we saw in the work on expert systems, there
are real limitations in using work from artificial intelligence, which has progressed without concern
for cognitive fidelity. We still need to decpen our understanding of human cognitive processes and
how they can be modelled. For instance, theories of learning, in contrast to theorics of performance.
have yet to be integrated into tutoring systems. The range of tasks for which accurate student models
can be reasonably produced is relatively narrow and consists of tasks that are algorithmically tractable
and that do not involve a great deal of general world knowledge. A prime example is caiculus. To
understand human expertise more gencrally will involve a great deal more empirical and simulation
research.

Also, our understanding of the learning processes by which knowledge is acquired is still quite
primitivc.  Evidence of this is the fact that no tutoring system actively uses a learning model in its
computations. Any pedagogy necds to be rigorously founded in a theory of learning. Qbviously, the
cognitive science efforts in learning (Anderson, 1983; Holland, Holyoak, Nisbett, & Thagard, 1986;
Laird, Rosenbloom, & Neweli, [986; Langley, 1985; VanLehn, 1983) are prime candidates for
support. Related to issues of learning are the issues of the origins of bugs. As is illustrated in the
work on BUGGY, the representation of knowledge can be closely connected to possible bugs.
Currently, most tutor builders have to invest large amounts of time building up bug catalogs. It
would accclerate the development of tutors if we had a theory or theories of the origin of bugs.

There seems to be little point in supporting work in artificial intelligence, which is not
cognitively motivated, if we want to further the goal of developing intelligent tutoring systems. There
are two domains in artificial intelligence that are cxceptions, however: qualitative process models and
natural language processing for tutorial dialogues. Our need for mechanisms in these fields is so
great that insisting on cognitive fidelity in the artificial intelligence system would be premature.
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Devclopment of the expert module is not independent of the rest of the tutoring system in
which it resides. Much of my discussion of the cxpert module has been concerned with its
implications for other components of a tutoring system.  Although there is need for research on
models of human expertise in the abstract, there is also nced for research on how such modules will
fit into an overall tutoring architecturc. We have seen that various types of modules tend to be
linked to various styles of tutoring -- black box modeis with issue-based tutoring, cognitive ruie
systems with model tracing, and declarative systems with Socratic tutoring.  There is room for
expanding our catalog of architectures and their relationships to expert modules. We also need to
explore how the design of an interface can change the nature of the expert module. To take a
simple example, the advent of structure-based ecditors has climinated the necd for programming tutors
to bc concerned about teaching syntax.

Finally, we need a meta-theory of the expert formalisms we are using and of how they can be
taught. Right now the development of expert modules is the domain of a few cognitive scientists even
more select than the builders of expert systems. We need to develop methods for teaching the use of
cognitive science formalisms to curriculum developers.  Not only is this an important practical goal,
but in pursuing it I think we will come to a decper understanding of the nature of a cognitive
theory.

I think we are in a position to develop an authoring environment around expert system
formalisms such as production systems or schema systems. We could develop a set of tools and
instructional materials that would make it easy for curriculum developers to use these systems. The
first steps towards tutoring systems that tcach students how to program with production systems already
exist (Zhang, 1986). The facilitics for actually delivering the tutoring could be made a prepackaged
part of the authoring environment. All the curriculum designers would have to do is develop the
expert module which, of course, is currently half the job of developing an intelligent tutoring system.
However, delivery of the tutoring could at least be automated, and the expertise for developing the
expert module could bc more widely distributed.

IX. NEAR-TERM GOALS

Relatively little activity is currently occurring in intelligent tutoring that does not have the status of a
basic research project whose goal is to get more basic knowledge rather than to actually build useful
intelligent tutoring systems. However, the point has been rcached where a few applications are
feasible, and it might be worthwhile to pursue some of them, both for the rclatively immediate benefit
and for some sense of how the enginecring of these projects will progress.

In my view the one area in which we might develop reasonably good cognitive models that
could be made part of intelligent tutors is that of rule-based systems for algorithmically tractable
domains. These domains include mathematics at the high school or junior-college fevel, basic
sciences like physics, basic electricity and elcctronics, some engincering and statistics, introductory
programming, and use of various packages like LOTUS 1-2-3. This is not to say that development
in these domains will be cheap. It will probably take hundreds of hours to just analyze and codify
the expert module for each hour of instruction, let alonc build a full tutor. However, such time
frames are at least within the same order of magnitude as those that go into building conventional
cducational software.

Another area that may yicld some short-term payoff is use of off-the-sheif expert modules
cither developed as black boxes or devcioped out of the knowledge engineering tradition of artificial
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intelligence.  This tactic circumvents the hundreds of hours that go into building the expert module.
As we have seen, issue-oriented methodology shows <somc potential for utilizing these tutors. Basic
rescarchers have been somewhat reluctant to follow up these issue-oriented methods because of their
perceived limitations. Researchers have been moving to expert modules with greater cognitive fidelity,
and even if thcy continue to use an issue-oriented mcthodology, they use a methodology appropriate
for such modules. There may be a great practical payolf to seeing how to develop methods for use
with the avaiiable expert systems. It would also be in the interest of the Air Force to identify and
sponsor some project of particular intcrest to the military.  Besides possibly delivering an actual
system, this effort would uncover the issues specific to military applications. 1 can only guess where
the needs of the military are, but 1 would think electronics and electricity instructors in service of
maintenance would be a prime candidate. A fair amount of work has already been done in this
field. although of a rather theoretical varicty. It would be profitable to see what would happen if we
made the practical compromises necessary {o sce an intelligent tutorial system in an actual classroom.
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DISCUSSION
The Expert Module

Discussion of the Expert Module is deferred to page 65. There

James G. Greeno discusses both Chapter 2 and Chapter 3.
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CHAPTER 3
STUDENT MODELING

Kurt VanLelin
Assistant Profcssor
Department of Psychology
Carnegie-Mcllon University

This chapter reviews the rescarch literature concerned with the student modeling component of intelligent
wtoring systcms.  An intclligent tutoring system, or ITS, is a computer program that instructs the student in an
intclligent way. There is no accepted definition of what it mcans to tcach intclligently. Howcever, a characteristic
sharcd by many ITSs is that they infer a2 modcl of the student’s current understanding of the subject matter and usc
this individualized modcl to adapt the instruction 1o the student’s needs. The component of an ITS that represents
the student’s current state of knowledge is called (he student model. Inferring a student modcl is called diagnosis
because it is much like the medical task ol inferring a hidden physiological state (i.c., a discasc) from obscrvable
signs (i.c., symptoms). An ITS diagnostic systcm uncovers a hidden cognitive state (the student’s knowledge of the
subjcct matter) from obscrvable behavior.

The student model and the diagnostic module arc tightly intcrwoven. The student model is a data structure,
and diagnosis is a process thal manipulatcs it. The two components must be designed together.  This design
problem is calicd the student modeling problem. This chapier revicws solutions that have been found to the student
modcling problem and discusses the techniques that have been discovered.

I. THE STUDENT MODELING PROBLEM

Most design problems in computer science can be specilicd by describing the desired output of the program
and the available input. The design problem herc is not, unfortunately, so ncatly circumscribed.

Generally speaking, the input for diagnosis is garncred through interaction with the student. The particular
kinds of information avaifable to the diagnosis module depend on the overall ITS application. The information
could be answers to qucstions posed by the ITS, moves taken in a gams, or conunands issucd (o an editor. In some
applications, the swident’s educational history is also availablc to the diagnostic component.

The output from the diagnostic module is cven harder to circumscribe. In fact, it docsn’t even make sense
to talk about the product of diagnosis as "output” (here, the analogy to medical diagnosis breaks down). Rather, the
result is a databasc, the student model, which accuralcly reficets the student’s knowledge state. The student modcl is
drawn on by other I'TS modules for many purposes. Below are listcd sonic of the most common uscs for the student

model.

Advancement. Somc 1TSs usc a structurcd curriculun, A student is moved to the next topic in the
curriculum only when he or she has mastered the current topic. In such applications, the student model represents
the student’s level of mastery. Peniodicatly, the ITS asks the student model for the level of mastery on the current
topic, weighs it, and dccides whether to advance the student to the next topic. This usc of student models is called
advancement.  Advancement is uscful not only with lincarly structurcd curricula, where instruction dwells on onc
topic at a time, but also in componcntially structurcd curricula, where a student cxerciscs scveral topics or skills at
the same time. For instance, in the WUSOR ITS (Goldstein, 1982), the student uscs scveral reasoning skills at the
same time to hunt a beast in a mazc fillxt with dangerous pits and bats. The techniques for cstimating the
dangcrousness of caves can vary independently of the techniques for determining what caves are likely o contain
the beast. The ITS can advance a student through the skill levels for assessing danger independently of advancing
the student through the skill of locating quarry. This illustratcs how advancement is uscd in ITSs that do not usc a

lincarly structured curriculum.

Offering unsolicited advice. Somc ITS systems are like athlctic coaches in that they offer advice only when
they sce that the student nceds it. IF the student is performing well, the coach remains silent. A good coach will also
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remain silent if the student makes a mistake in a situation that is too complicated for a successful pedagogical
interaction to take place. In order o offer unsolicited advice at just the right moments, the ITS must know the state
of the student’s knowlcdge. For this, it reads the student modcl.

Problem generation. Somc ITSs gencrate problems for the student dynamically rather than sequencing
through a predefined list of problcms or lctting the student invent problems to solve. In many applications, a good
problem is just a little beyond the student’s current capabilitics. To find out where the student’s current capabilitics
lic, the problem gencration module consults the student model.

Adapting explanations. When good tutors explain something to the student, they use only concepts that the
student already understands. For an ITS to issuc good explanations, it must detcrmine what the student knows
already. To do so, it consults the student modcl.

The preceding functions are some of the most common ways the ITS components use the student model.
Because there are so many ways to usc the student model, we cannot talk scnsibly about the output of the diagnosis
module, nor can we classify student modcling problems by the desired input-output relationship. What does make
sense is to classi{y these problems according to the structural properties ol the student model. For instance, the
student model might represent various levels of mastery of a subskill by a single bit (mastered vs. not yet mastercd),
by a number, or by a complicated qualitative description. Such structural properties of the student model determine
how complicated the student modeling problem is and what kinds of techniques are best suited for its soluiion.

II. A THREE-DIMENSIONAL SPACE OF STUDENT MODELS

This section reviews existing student modeling systems in the context of a classification based partially on
structural properties of the student model and partially on properties of the input available to the diagnosis module.
At this writing, approximately 20 student maodeling systems have been built, and more arc under development.
There arc many differcnces among them. The classification presented here is intended to capture the differences in
the student modeling problem that rcally make a diffcrence in the solution techniques. If this classification is
correct, it can be uscd Lo predict what kinds of student modeling techniques would be most useful for some new
student modeling problem. Ncedless 1o say, such a prediction would be only the starting point in a long design
process that results in a system adapted to the demands of a particular ITS. Indced, as more ITSs are constructed,
the perception of what differences rcally matter can be expected to change. That change is one rcason why ITS
construction is still in the rescarch stage and has not yct beccome a maturc technology. In short, the following
classification is both heuristic and tcntative.

The classification has threc dimensions. The first one relaies to the input, and the others are structural
propertics of the student modcl.

Bandwidth

The input to the diagnosis unit consists of various kinds of information about what the student is doing or
saying. From this, the diagnosis unit must infcr what the student is thinking and believing. Clearly, the lcss
information the unit has, the harder its task is. The bandwidth dimension is a rough categorization of the amount
and quality of the input.

Three levels of information suffice to capture most of the variation among existing ITSs. In order to explain
them, we will assumc that students arc solving problems cither poscd by themsclves (c.g., What cave shall I explore
ncxt?) or by the ITS (c.g., What is 283-1197). If the problem solving takes more than a few milliseconds, then we
can safcly assume that the students go through a scrics of mental states. The highest bandwidth an ITS could attain
would be a list of the mental states that the students traverse as they solve problems. Human mental states are not
dircctly accessible by machincs, so no ITS can rcally achicve this "mental states” bandwidth. However, by asking
enough questions or by cliciting verbal protocols, an ITS can obtain indircct information that approximates the
students’ mental statcs. So the highest bandwidth category is approximate mental states.

In more complicated forms of problem solving, such as solving algebraic equations or playing chess, the

students make obscrvable changes that carry the problem from its initial unsolved state to its final, solved state.
This results in a scrics of obscrvable intermediate statcs, such as the midgame board positions in chess or the
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cquations writtcn before the last cquation during algebraic cquation solving. Somctimes an ITS has access to these
intcrmcdiate statcs, and somctimes it can scc only the final state -- that is, the answer. The other two categorics of
bandwidth arc final states and intermediate states.

To summarizc, the three categorics, from highest to lowest bandwidth, are mcntal states, intermediate
statcs, and final states. Each category is intended to include the information in the catcgory bencath it. Mental
states includces intcrmediate and final states. Intermediate states includes [inal statcs.

The subject domain of programming provides good cxamples of the bandwidth dimension because an ITS
cxists for cach bandwidth catcgory. Andcrson’s LISP Tutor (Ratser, Anderson, & Farrell,1985) contains a detailed
modc! of the cognitive processcs that Anderson belicves underlie the skill of programming. The tutor uses a
mcnu-driven interface to offer the student choices about what goals (o attack next, what stralegics to usc, what code
fragments to writc down, and so on. The model aims to offer so many choices that any problem-solving path that a
student wants to take is available. The belief is that the menus do not interfere with the path of mental states but
merely allow the ITS to track the student’s cognitive progress. Thus, the input to the diagnosis component is an
approximation 1o a scquence of mental states. The LISP Tutor nicely illustrates the bandwidth level of mental
states.

The Spade ITS (Miller, 1982) was ncver completed; but,if it had been, it would illustrate the second level
of bandwidth. Spadc acts as a coach who watches a student program. The student uscs a structure cditor; that is, an
cditor that knows about the programming language and allows only syntactically legal edits. Spade sces all the
intermediate observable steps as the student creaies a program. Unlike Anderson’s LISP Tutor, Spade cannol sce
the student’s decisions about programming goals and stratcgics. Its input bandwidth fits squarcly in the category of
intcrmediate stalcs.

In contrast, PROUST (Johnson & Soloway, 1984a; Johnson & Soloway, 1984b) is given only the first
completc program that the student submits to a PASCAL compiler. PROUST docs not have access (o the student’s
scratch work or incomplcle programs.

The bandwidth dimension is perhaps the most important of the thrce dimensions. Morc so than the others, it
determines the algorithm used for diagnosis. As will be shown in a later scction, where diagnosis algorithms are
discussed in detail, there arc nine basic algorithms. Five arc uscful with final statc bandwidth systems, three arc
appropriatc for intcrmediate state bandwidth systems, and onc is appropriate for mental states bandwidth systems.

Target Knowledge Type

Studeat modcls can actually solve the samc problems that students, do and can thercfore be used to predict
the students’ answers. This is a distinguishing characteristic of the student models used in ITSs. Student modcls
used in older systems for computer-bascd training cannot actually gencrate problem solutions, although they may be
able to gencrate a probability of a correct solution.

Solving problems requires some kind of intcrpretation process that applics knowledge in the student model
to the problem. There arc two common types of intcrpretation, onc for procedural knowledge and one for
declarative knowledge!. The interpreter for procedural knowledge is simple. Tt docs not scarch but makes decisions
bascd on local knowlcdge. It is like a littlc man with a flashlight who can scc only a little way from the strand of
knowlcdge he is standing on; based on his view of the knowledge locale and the current state of the problem, he
decides which strand of knowledge to turn onto and follow. A dcclarative interpreter constantly scarches over its
whole knowledge basc. Itis like a librarian who scarches out the answer to a client’s query by scarching reference
books, assembling the facts, and deducing the answer from them. Proccdural knowledge represcntations have been
uscd for skills such as algcbra cquation solving (Slceman, 1982), game playing (Burton & Brown, 1982; Goldstcin
& Carr, 1977; Goldstcin, 1982), multicolumn arithinctic (Brown & Burton, 1978; Burton, 1982, Langlcy & Ohlsson,
1984), and solving calculus intcrgrals (Kimball, 1982). Declarative knowledge representations have been used for
geography (Carboncll, 1970; Carboncll & Collins, 1973; Grignetti, Hausman, & Gould, 1975) and meteorology
(Stevens, Collins, & Goldin, 1982).

IThe section on dircctions for futurc rescarch discusscs the student modcling problem for a third type of
knowlcdgc, qualitative mental models of complex systems.
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The distinction between procedural and declarative knowledge is notorious in artificial intclligence as a
fuzzy, scldom-uscful diffcrentiation. Because it is based on how much work the interpreter docs, and because work
is an cssentially continuous quality, the boundary between them is not sharp and clear. For instance, GUIDON'S
knowledge of medicine (Clancey, 1982) is partly declarative -- hecausc it says what symptoms indicate which
discases -~ and partly procedural -- because it savs which questions 1o ask the paticnt under what circumstances.
PROUST’S knowledge of programming (Johnson & Soloway, 1984a, 1984b) is cven morc dilficult to classify. Itis
mostly about which PASCAL code templates to usc to achicve what purposcs. In this respect, it is declarative
knowledge about PASCAL. Howcver, a simple top-down programming stralegy readily converts this knowledge
1010 programmecer actions.

Nonetheless, the distinction between procedural and declarative knowledge is important here because the
complexity of diagnosis is dircctly proportional to the complexity of intcrpretation. In fact, diagnosis is the inverse
of intcrpretation. Interpretation takes a knowledge base and a problem and produces a solution. Diagnosis takes a
prablem and a solution and produces a knowledge base. When declarative knowledge is iterpreted, many itcms
may be aceessed in order (o produce a solution. When declarative knowledge is diagnosed, the responsibility for a
wrong answer may lic with any onc of the many itcms that could be accessed in producing this answer. In gencral,
the more complicated the interpretation, the more complicated the diagnosis.

Thesc considcerations underliea sccond dimension in the space of student modeling problems, the type of
knowlcdge in the student maodel. The major distinction -- procedural vs. declarative -- has been mentioned already.
It is usclul o divide proccdural knowledge into two subcatcgorics:  flat and hicrarchical.  Hicrarchical
representations allow subgoaling; {1at ones do not. For instance, the ACM diagnosis system (Langlcy & Ohlsson,
1984) uscs a [lat representation for a subtraction procedure.  Opcrations such as taking a column diffcrence or
adding 10 to a minuend digit arc sclected solely on the basis of the current state of the problem. Tn the BUGGY
diagnosis system (Brown & Burton, 1978), subtraction proceduics are represented as goal hicrarchics with goals like
“Borrow™ or "Borrow across zera." Operators are sclected on the basis of the problem state and the currently active
subgoals.

The distinction between flat and hicrarchical representations affects the diagnosis. A diagnostic system for
flat representation necds to infer what problem-state conditions trigger cach operator.  This is casy because the
system can sce both the problem states and the operator applications, A diagnostic system for hicrarchical
representations nceds (o infer conditions and both the problem states and the subgoals.  But it cannot sce the
currently active subgoals, so its infcrence problem is much harder.

In summary, there are three types of knowledge representation: flat procedural, which makes the student
modcling problem the casicst; hicrarchical procedural, which increases the difficulty of the studenat modcling
problem; and declarative, which makes the student modceling problem most difficult.

Differences Between Student and Expert

ITS systems usually ecmploy an cxpert model as well as a student model.2 The cxpert model is used for
many purposcs, such as providing cxplanations of the correct way (o solve a problem. Because students will (onc
hopes) move gradually from their initial state of knowledge towards masicry, student modcls must be able to change
pracchilly from representing novices 1o representing experts. Conscquently, most I'TSs usc the the samc knowledge
representation language for both the expert model and the student model. Conceptually, the I'TS has onc knowledge
basc to represent the expert and a different knowledge base to represent the student.

However, cconomy and other implementation considerations frequently dictate a merger of the two
modcls. The student model is represented as the expert model plus a collection of differences. Therc are
basically two kinds of differences: missing conceptions and misconceptions. A missing conception is an item of
knowledge that the expert has and the student does not. A misconception is an item that the student has and
the expert does not.

2n this chapter, "expert” is intended to mcan a master of the 1TS's subject matter. The subjcct matier is usually
only a fraction of the knowledge possessed by a true expert m that arca.
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Some student modeling systems can represent only missing conceptions. Conce tually, the
student model is a proper subset of the expert model. Such student models are called overlay
models because the student mode! can be visualized as a piece of paper with holes punched in 1t
that is laid over the expert model, permitting only some knowledge to be accessible. A student
model, therefore, consists of the expert model plus a 1ist of {tems that are missing. A varfant
?Id?:ae{lsaymmogeﬂng rugsiw::gh{:s o? each elemen(}; gns tihe expert knowledge base; for example, 1.0

stery, -l. ndicates 1ignorance, an . ndicates partial ry.
are the most common type of Student u?ode!. P mastery. Overlay models

Other systems represent both misconceptions and missing conceptions. The most common type of student
modcl in this class cmploys a library of predefined misconceptions and missing conceptions. The members of this
library arc called bugs. A student modcl consists of an cxpert model plus a list of bugs. This bug library technique
is the second most common type of student modeling system. This system diagnoscs a student by finding bugs {from
the fibrary that, when added to the expert model, yicld a student modecl that fits the student’s performance.

Assembling the library is the biggest hurdic in the bug library approach. The library should be nearly
complete. If a student has a bug that is not in the library, then the student model will try to fit the behavior with
somc combination of other bugs. It may totally misdiagnosc the student’s misconceptions.

There are only a few techniques for obtaining a bug library:
1. Bugs can bc glcancd from literature, particularly from the older works in the cducational literature.
For instance, Buswell (1926) lists numcrous "bad habits of thought" for arithmetic.

2. Bugs can be found by careful hand analysis of students’ behaviors, Hand analysis of scveral thousand
subtraction tcsts yielded a bug library of 104 bugs for Burton and Brown's DEBUGGY program
(Burton, 1982; VanLehn, 1982).

3. Il there is a lcarning theory for the subject domain, it may be able to predict the bugs that student have.
For instance, Repair thcory (Brown & VanLchn, 1980; VanLchn, 1982) predicts subtraction bugs.
When its predictions were added to DEBUGGY'S library and students' tests were reanalyz-
ed, some of the students' answers were fit much better by the new bugs (VaniLehn, 1983).
So theory can be a valuable contributor of bugs to a bug library.

An alternative to the bug library approach is to construct bugs from a library of bug parts. Bugs arc
constructed during diagnosis rather than being predefined. For instance, each bug constructed by the ACM system
(Langlcy & Ohisson, 1984) is a production rulc consisting of a condition, which is a conjunction of predicates, and a
single action. Thc predicates and the action arc drawn from predefined librarics. If the predicate library has P
predicates, and the action library has A actions, then ACM can represent approximately A * 2P distinct bugs. As in
the bug library approach, a student modcl may have more than onc bug. So ACM can represent a very large number
of student models using only two small librarics of bug parts. Of course, the libraries of bug parts must be
asscmbled by the creators of the ITS. The problems of filling these librarics are cxactly analogous o the problem of
filling a bug library. Howcver, because librarics of bug parts are smalicr, the problems may be casier to solve. This
approach 10 representing differences between the student and the cxpert is the newest and lcast common. Its
propertics are largely unknown.

To summarize, the threc major techniques for representing differences between the student and the expert
arc overlays, bug libraries, and bug part libraries.

A Chart of the Space

The preceding section defined three dimensions of student models, cach with three distinguished values.
Figure 3.1summarizcs them. Under cach dimension, the order of the categorics corresponds to the difficulty of the
diagnostic problem, casiest {irst. There arc 33 possible student modcls. The student modcls that make diagnosis
casicst arc ovorlay models on flat procedural knowledge, where the student’s menlal states arc available o the
diagnostic program. The hardest problem is a bug-parts-library student model over declarative knowledge when
only the final result of the student’s reasoning is available to the diagnostic program.

Not all of the 27 possible types of student models have been implemented. Figure 3.2 shows some of the
existing student modcling systems and their location in the space of the studcnt models. The bandwidth dimension
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1. Bandwidth -- How much of the student’s activity is available to the
diagnostic program?

a. Mental states -- All the aclivity, both physical and mental,
is available.

b. Intermediate states -- All the observable, physical activity is
available.

c. Final states -- Only the final state -- the answer -- is available.
2. Knowledge Type -- What is the type of the subject matter knowledge?

a. Flat procedural -- Procedural knowledge without subgoaling.

b. Hierarchical procedural -- Procedural knowledge with subgoals.

c. Declarative.

3. Student-Expert Difference -- How does the student model differ from the
expert model?

a. Overlay -- Some items in the expert model are missing.

b. Bug library -- In addition to missing knowledge, the student model
may have incorrect "buggy” knowledge. The bugs come from a
predefined library.

c. Bug part library -- Bugs are assembled dynamically to fit the
student's behavior.

Figure 3.1: The Threc Dimensions of Student Modcls.

is the Y axis and the knowlcdge type dimension is the X axis. The student-expert differences dimension is indicated
by asicrisks: ** mcans a bug parts library, * mcans a bug library, and no asicrisks mcans an overlay. The ITS
systems referenced in the figurc arc all quitc complex, and there is ample room for disagrcement over how they
should be classilicd.

[II. DIAGNOSTIC TECHNIQUES

Nine diagnostic techniqucs have appeared so far in the ITS literatre. This section revicws them one by
one. Most techniques have been used in just a few kinds of student models. As a framework for further discussions,
Figure 3.3 shows how the diagnostic techniques align with the student models. The space of student

models s shown in the same format as Figure 3.2; but the cells are filled with the names of the
diagnostic techniques that have been employed in the corresponding student modeling systems. It is
fmportant to note that this chart is based on actual systems and the diagnostic techniques they
use. It §s 1ikely that some of the techniques can be used with other types of student models.
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Figure 3.3: Diagnostic Techniques.

The model tracing technique (Anderson, Boyle, & Yost, 1985) is probably the casiest technique to
implement hecavse it assumcs that all of the student’s significant mental states arc available to the diagnostic
program. The basic idea is to usc an underdetermined intcrpreter for modeling problem solving. At cach step in
problcm solving, the underdetermincd inlerpreter may suggest a wholc sct of rules to be applicd next, whereas a
deterministic intcrpreter can suggest only a single rule. The diagnostic algorithm fircs all these suggested rulcs,
obtaining a sct of possiblc next statcs. Onc of these states should correspond to the slate gencrated by the student. If
s0, then it is recasonably certain that the student uscd the corrcsponding rule 1o gencrate the next mental state and so
must know that rule. The student model is updated accordingly. The name “model tracing” comes from the fact that
the diagnostic program mercly traces the (under-determined) exccution of the modcl and compares it to the student’s

activity.

Model Tracing
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Obviously, the modecl of problem solving must be highly plausible psychologically for this technique to be
applicabic. Even if such a model is available, practical deployment of this tcchnique requires solving scveral tricky
technical issucs. Here are just three: (@) What should the system do il the student’s state docs not match any of the
states produced by the rules in the model? (b) Supposc the student gencrates a next state by gucssing or by mistake.
The systein will crroncously assume that the student knows the corresponding rule. (c) When should the systcin
change its mind about its student model?

Path Finding

If the bandwidth is not high cnough to warrant the assumption that the student has applicd just onc mental
rule, then model tracing is inapplicable.  Howecver, it is [casible to put a path-finding algorithm in front of the
modcl-tracing algorithin. Given (wo consceulive states, it {finds a path, or chain of rule applications, that takes the
first statc into the sccond state. The path is then given to a modcl-tracing algorithm, which treats it as a {aithful
rendition of the student’s mcental statc scquence.

The main technical problem with path finding is that therc are usually many paths between the two given
states. Should the path finder send all the paths to the modc! tracer and Ict it dcal with the ambiguity? Should it usc
heuristics to rcjcct unlikely paths (Ohisson’s DPF system (Ohlsson & Langley, 1983) takes this approach)? Should
it ask the students what they did? These issucs descrve further research.

Condition Induction

Modecl tracing assumcs that any two consccutive states in the student’s problem solving can be connected
by a rulc in its modcl. This puts strong demands on the completencss of the model. Overlay models often will not
work. Bug library modcls must contain a large number of bugs. Bug part librarics arc thercfore uscd as the basis {or
student modcling. Given two consccutive states, the system constructs a rule that converts onc state to the other.
Although there are potentially many ways Lo construct such buggy rulcs, the oaly technique that has been tricd so far
is condition induction (Langlcy & Ohlsson, 1984).

This technique requires two librarics. One is a library of operators that convert one statc to another. The
other is a library of predicates. The technique assumes that the operator library is rich cnough that any two
canscculive mental statcs can be matched by applying soinc operator. That operator becomes thc action side of the
production rulc that will be gencrated. The hard job is determining what logical combination of predicates should
constitute the condition side of the production. The condition should be true of states in which the rulc was applicd
and falsc otherwisc. The system currently has onc state for which it is truc; that is, the firsl stale in the state pair. In
order to rcliably induce a condition, it nccds 1o cxaminc morce statcs.  These staies can come from a record of the
student’s past problem solving. The system can also delay construction of the rule until morce states arc cxamincd in
later problem solving. This technique scems to require much more data on the student’s problem solving than
diagnostic techniques for overlay modcls or bug library models do.  This is just what onc would expect [rom
information thcory. The bug part library can represent many tmore hypotheses than the other kinds of models can, so
morce data is nceded to discruminate among them,

Plan Rccognition

In principlc, path finding followed by modecl tracing, with or without rulc induction, can diagnosc anything.
However, when the paths between obscrvable states get long, diagnosis may become infeasible or unrcliable. Plan
rccognition is a diagnostic tcchnique that is similar to path finding in that it is a front end to modcl tracing.
Howcver, it is more cffcctive than path finding for the special circumstances in which it applics.

Plan rccognition requires that the knowledge in the student model be procedural and hicrarchical and that
all or ncarly all of the physical, obscrvable states in the student’s problem solving be madc available to the
diagnostic program. Thesc two requirements together dictate that an cpisode of problem solving can be analyzed as
atree. The 'raves of the tree are primitive actions, such as moving a chess picce or writing an cquation down. The
nonlcal nodcs in the tree are subgoals, such as trying Lo take the opponent’s queen or factoring x243x-1. The root
node of the tree is the overall goal (e.g., Win this chess gamc, or solve x[x+4]-x=1). Links between nodes in the tree
represent goal-subgoal relationships. Such a rec is often calied a plan -- a misnomer {rom its carly devclopment in
robatics. Plan recognition is the process of infcrring a plan tree whea only its lcaves are given. Computationally,
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plan recognition is similar to parsing a string with a context-frcc grammar -- a parsc tree is constructed whose leaves
arc the clements of the string.

When plan recognition is used {or diagnosis, it serves as a front end to model tracing. Assuming that plan
recognition can find a unique plan tree that spans the student’s actions, then the student’s mental path is assumed to
be a depth-[irst, left-to-right traversal of the trec. This path can be input to a model tracing algorithm, which updates
the student model accordingly.

There arc two technical issucs to confront: What if the plan recognizer finds more than one tree that is
consistent with the student’s actions? What if it doesn’t find any? To avoid the sccond situation, plan recognition
systems often use bug library models rather than overlay modcels. Bug part library models could also be used by
taking advantagc of a machine-lcarning tcchnique called learning by completing explanations (VanLehn, 1987). The
diagnosis programs that have used plan rccognition (Genescreth, 1982; Miller, 1982; London & Clancey,
1982) have been more concerned ‘rith the first problem; that is, determining which plan tree among
several trees consistent with the student's actions is most plausibly the student’s mental plan.
These programs use a variety of heuristics.

Issue Tracing

The model tracing technique assumes that the rules in the student model are a fairly accurate psychological
model of the units of knowledge employed by a student. In some cascs, such a detailed modcl of student cognition is
infcasible or unnecessary. In particular, a finc-grained student model is probably more work than it's worth if the
tutoring can not b adapted to the intricacics of a particular student’s misconceptions. For instance, a perfect model
of a student’s subtraction bug is unnccessary if the tutor’s remcdy is merely to tcach the procedure over again., In
general, the level of diagnosis and tutoring should be the same.

If a coarse-graincd student model is desired, then a variant of model tracing is appropriate. It is based on
analyzing a short cpisode of probicm solving into a set of microskills or issues that are employed during that
cpisode. The analysis does not explicate how the issues inlcracted or what role they played in the problem solving.
It claims only that the issues were uscd.

The WEST system (Burton & Brown, 1982) pioneercd this diagnostic technique. Its task is to teach a
simple board gamc. A turn consists of choosing an arithmetic combination of three randomly chosen numbers in
such a way that the value of the expression, when added to the current position of the player’s token, results in a new
position that is closer to the goal position. Expressions may contain any arithmetic operation or parentheses. There
arc several tricks involving "bumping” an opponcnt or taking a shortcut, West analyzes a student’s move into
scveral issucs including plus, minus, times, divide, parcntheses, bump and shoricut. If a student forms the
cxpression 5 * 2 - 1, then the move is analyzed as involving the issucs times and minus, and not involving the
others. The student’s actual problem solving probably involved trying scveral cxpressions, seeing where they
moved the token, and selecting the expression that maximized progress toward the goal. A modcel dracing technique
would have to modcl this trial-and-crror scarch in gory dctail. The issuc tracing technique ignores the details. Its
analysis claims only that the student apparently understands thesc two issues because the student's move embodied
them.

The first step in issuc tracing is (0 analyze the student’s move and the expert’s move into issues. Each issue
has two counters, uscd and missed. Uscd counters are incremented for all the issucs in the student’s move. Missed
counters arc incremented for all the issucs in the cxpert’s move that are not in the student’s move. If the used
counter is high and thc missed counter is low, the student probably understands the issuc. If the missed counter is
high and thc used counter is low, then the student probably does not understand the issue. If both counters are zero,
the issuc has not come up yet.3

31f both counters are high, the model is inadequate in some way. The latter situation is called zear (Burton &
Brown, 1982). In West, it occurred when the student’s objective in the game was not what it was assumed to be (i.c.,
some students did not carc about winning but just wantcd (o bump their opponent as often as possible). West is
cquipped o handlc this. It scarches for the student’s objective by gencrate and test. It has lists of possible student
objectives {rom which it can choose, and it then rcanalyzes the cntire game using that objective. If the tear is
reduced, then West has found the student’s objective.
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This simple diagnostic proccdure has a hidden problem. Ignorance of any onc of the issucs involved in an
cxpert’s move is sulficicut to causc the student to overlook that move; yct issuc tracing blames all the issucs evenly
by incrementing all their missed counters.  ‘This introduces some inaccuracy into the student model. WEST'S
solution is to require that the ratio missed/uscd be fairfy high before it assumes that the student needs tutoring on
that issuc. WUSOR (Goldstein & Carr, 1977; Goldstcin, 1982) has a morc complicated scheme. It has a system of
cxpeclations about what issucs arc likcly (0 be icarned first and what issucs typically follow later. These prior
probabilitics arc folded into the cvaluation of whether a student knows an issuc or not. Evaluations bascd on
statistical {functions have been used in Kimbali's calculus tutor (Kimball, 1982) and otlice systems for similar

purposcs.

Expert Systeins

Clanccy’s GUIDON system (Clancey, 1982) uscs a large-grained student modcl just as WEST and
WUSOR do. Instcad of issucs, GUIDON uscs infcrence rules. The rules concern medical diagnosis and modcl
modcrately large chunks of knowledge that summarize a varicly of cognitive operations. A typical rule is:

Rule 545

if (1) the infection was acquired while the patient was hospitalized,
and
(2) the white blood cell count is less than 2.5 thousand,
then
(a) there is strong evidence that the organism is E. coli, and
(b) there is suggestive evidence that the organism is Klebsiella
pneumonia, and
(c) there is suggestive evidence that the organism is Pseudomonas.

Because such rules arc more complicated than issucs, the diagnosis problem is harder. For instance, if a
student is given a case that matches the antecedent clauscs in Rule 545, and yct the student hypothesizes anly onc of
the conclusions (c.g., conclusion a, that thc organisi is E. coli) bul not the ether two, then it is not clear whether the
student has uscd the rule or not. Another rule, triggered by some other fcature of the case, may have led the student
to conclude that the organism was E. coli.

There are many possible ways for rules (o interact. To handlc the myriad of combinations, GUIDON uscs
an expert sysiems approach. It has dozens of diagnostic rules such as this onc:

if (1) the student’s hypotheses include ones that can be concluded
by this rule, and
{(2) the student’s hypotheses do not include all the conclusions
of this rule,

then
(a) decrease the degree of belief that the student knows this rule

by 70%.

This particular diagnostic rulc applics in the situation just described. GUIDON, which uscs an overlay model with
continuous weights, accordingly downgrades the weight in the student model for Rule 545.

The basic idca of the cxpert systens approach to diagnosis is to provide diagnostic rules for all the
situations that arisc. Somc technical issucs arc: Il two diagnostic rulcs match the current situation, how arc their
conclusions combined? What if ne diagnostic rulc matches? How much will diagnostic rules have (o change if the
rules in the knowledge basc for the task domain change?

Dccision Trees

All diagnostic tcchniques must deal with the fact that students rarcly have just one knowledge deficit. They
usually have scveral, Somc of the techniques described carlicr -- notably model tracing, path finding, ard plan
recognition -- assumc (hat at most one rule lires between consecutive mental states, so cach deficit will show up in
isolation as a buggy rule applicatior.. Because bugs appear in isolation, cach bug can be accurately diaghosed cven
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whcn. there are scveral of them. Systems likc WEST and GUIDON, which have Icss bandwidth, use a less accurate
description of knowlcdge deficits (c.g., weakncess on issucs), which allows them to model combinations of deficits
simply.

The next three techniques aim for highly accuratc diagnoscs with low bandwidths. They all work with final
states, which constitutes the lowest bandwidth in the student model space. The student models are based on bug
librarics. The bugs arc highly accurate: when installed, they predict the scquence of interimediate states and perhaps
cven the sequence of mental staies.

Diagnosis of multiplc bugs would be simpic if systems could gencrate the symptoms of co-occurring bugs
by taking the union of the symptoms they display in isolation. This is not always possible. To illustrate, Figure 3.4
shows two sublraction bugs, in isolation and co-occurring. On the first problcm, 50 - 28, the answer of the
co-occurring bugs, 30, cquals thc answer of the first bug in isolation. On the sccond problem, 712 - 56, the answer
matches the answer of the sccond bug in isolation, cven though the first bug also gets this problem wrong when it
occurs in isolation. When the sccond bug occurs in isolation on 712 - 56, the borrow in the units column changes
the tens column to 0 - 5, which triggers the bug. When the second bug occurs together with the first, it suppressed
the borrow, so the tens column remains 1 - 5, and the first bug is not triggercd. In this simple case, there is a causal
interaction betwecen the two bugs that makes them manifest differently. In gencral, bugs can interact in even more
complex ways.

Problems: 50 712

n [S.
O-N=0 30 656
N-M=|N-M]| 38 744
Both 30 744

Figure 3.4: Two Bugs, in Isolalion and Co-occurring.

The decision trec lechnique is a brute force approach to bug compounding. It was employed by the
BUGGY diagnostic system (Brown & Burton, 1978). BUGGY cnlarg}cd the library of bugs by forming all possible
pairs. Since therc were 55 bugs, this expansion generated about 55¢ (= 3025) bug pairs. In order to cfficiently
diagnosc this many bugs, BUGGY prc-analyzcd the subtraction test that students were given and formed a decision
tree that indexcd the bugs by their answers to the problems. The top node of the trec corresponds to the first
problem. Answers from all possible diagnoscs (a diagnosis is a bug or a bug pair) arc collccted. Most answers will
be gencrated by scveral diagnoscs. For cach answer, a daughter node is attached o the root node, labeled by the
answer. Associated with each node arc the diagnoscs that gave that answer.  The tree-building operation recurses,
once for cach new node, using the sccond test problem. When BUGGY s finished, a huge tree has been built. Each
diagnosis corresponds 1o a path from the root 1o some leal. If the test items arc well chosen, then every such path is
unique -- cach lcaf corresponds to cxactly onc diagnosis. In general, it is very difficult to find a short test with such
high diagnostic capabilitics. Burton (1982) discusscs this important issuc further.

All this trce building occurs before any students arc scen. It is the most expensive part of the computation.
Diagnosis of a student’s answers is simple, at lcast in principle. If a student makes no carcless crrors, then their
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answers are used to stcer BUGGY on a path {rom the root to the diagnosis that is appropriatc. Of course, most
students do make unintentional crrors (often called slips to distinguish them [rom bug-generated errors), such as
subtracting 9 - 5 and getting 3. Slips mcan that a simple tree-walk will not always Icad to a Icaf, so BUGGY
performs a tree search to find a diagnosis whilc allowing a minimal number of slips.

The advantage of the decision trce approach is that the tree search is simple enough to be implemented on a
microco.aputer. A larger computer can be used for the computationally intensive tree-building process. The
disadvantage of this tcchnique is that it docs not rcally handle multiple co-occurring bugs. Instcad, it computcs in
advancc all possible combinations (pairs, in BUGGY'’S casc) and trcats the bug combinations just likc primitive
bugs. This is usually too cxpensive if morc than two bugs can occur logether. Burton’s hand analysis of the data
uncovered students with {our co-occurring bugs. For BUGGY to diagnose these students would require
approximatcly 554 (= 9 million) bug tuples, which mcans a diagnostic trce with trillions of nodes.

Generate and Test

DEBUGGY (Burton, 1982) was designed to diagnosc up to four or five multiple co-occurring bugs. Unlike
BUGGY, it does not calculate the answers of co-occurring bugs in advance. Rather, it generates bug combinations
dynamically. It begins by finding a small sct of bugs that match some, but not necessarily all, of the student’s
answers.  There might be 10 bugs in this set. It then forms all pairs of these bugs (about 100 bug pairs). It also
makes pairs using a stored list of bugs that arc known o be dilficult to spot because they are often covered by other
bugs. From this set of perhaps 200 bugs, DEBUGGY sclccts the ones that best maich the student’s answers. Using
these favorites, the bug-compounding proccss occurs again and again until no further improvement in the match is
found. The resulting tuple of bugs is output as DEBUGGY'S diagnosis of the student.

DEBUGGY’S algorithm is a specics of a very general technique for diagnosis, called generate and test.
The diagnostic algorithm gencrates a set of diagnoses, finds the answers that each predicts, Icsts thosc answers
against the student’s answers, and kceps the oncs that match best. In gencral, generate and test is rather inefficicnt.
Domain-specific heuristics are often necded in order to speed it up.

Intcractive Diagnosis

DEBUGGY and BUGGY work with a predefined subtraction icst and the student’s answers to it. Thus,
they can be used as off-line diagnostic systems: the tcacher administcrs the test, mails the answers to DEBUGGY,
gets the diagnosis a fcw days later, and administers the appropriate remedial instruction. VanLchn (1982) reports the
results of such a usc of DEBUGGY.

Whithin a tutoring system, there fs no need to stick with a fixed 1ist of test items. The
system can choose a problem whose answer will help diagnosis the most. IDEBUGGY (Burton, 1982)
is such a system. Gfven a set of diagnoses consistent with the students' answers so far, it tries
to construct a subtractfon problem that will cause each diagnosis to generate a different answer.
Thus, the problem splits the hypothesis space, so to speak, It is not always possible to find
such a problem, so IDEBUGGY puts only a fixed amount of effort into this strateqy, then presents
the best problem it has found so far to the student. Still, the student can sometimes wait too
long for IDEBUGGY to present the next problem. Interactive diagnosis, where the dfagnosis
algorithm drives the tutorial interaction, puts heavy demands on the speed of the diagnostic
algorithm. Nonetheless, it can yleld highly accurate diagnoses with many fewer test {tems than a
fixed-ftem test would require in order to achieve the same accuracy. Reducing the length of the
diagnostic session may reduce students' fatigue and increase their willingness to cooperate.

1V. RESEARCH ISSUES

Cognitive diagnosis is a new [icld, and there are vast numbers of questions for research to address. There
are many qucstions of the form "Docs technique X work well with student models of form Y on subject domain Z7"
From an cnginccring and cducational standpoint, these arc the most important questions to address, for they turn a
miscellancous collection of cchniques, cach of which has been used once or twice, into a well-understood
tcchnology. To this collection of issucs, I would nominatc a few morc that arc not of the XYZ form.

Much rescarch has gone into finding diagnostic techniques that can produce very detailed descriptions of
the students’ knowledge. Simpler techniques such as issue tracing produce lcss detailed descriptions.  There is a
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tacit assumption that tutoring bascd on f{inc-graincd student models will be more cffective than tutoring based on
coarsc-graincd modcels. No onc has aticmptcd 1o check this assumption. We need to know when fine-grained
modcling is worth the cffort. This is not really a qucstion of how 1o do student modcling, but rather when to do
what kinds of student modcling. In order to address this question, onc could situate two or more student modeling
systems inside the same ITS and sce which one tutors morce clfectively.

Research oricnied towards improving student modcling could go in several directions. Onc is to employ
cxplicit modcls of Icarning. This topic was touched on in the WUSOR ITS (Goldstein & Carr, 1977; Goldstein,
1982). Incorporating models of learning into diagnosis has much polential power becausc it can radically reduce the
spacc that the diagnostic algorithm must search.

Intcractive diagnosis, where the diagnostic program sclccts problems to pose to the student, is another
technique that has great potential power. It has been bricfly cxplored with the IDEBUGGY student modcling
program (Burton, 1982) , the GUIDON ITS (Clanccy, 1982), and thc WHY projcct (Stevens, Collins, & Goldin,
1982). This topic -- the skill of posing problems -- seems almost as rich as diagnosis, which is the skill of
interpreting the student’s answcrs to problcms.

As user intcrlaces improve and powerful personal computers become cheaper, we are likely (o sec more
ITS designers choosing the high bandwidth option, where the student’s behavior is very closely monitored by the
system. The amount of time between the student’s actions is onc type of information that is available [or free but
that so far has been ignored by cvery ITS 1 know of. Chronomcltric data has been used in psychology for ycars as a
basis for deciding between potential models of human cognition. It would be interesting to see whether
chronometric data would favor finc-grained student modcling.

Much of the carly ITS rescarch concerncd students Iearning about physical systems. The SOPHIE project
(Brown, Burton, & DcKlicer, 1982) studicd students lcarning about electronic circuits. The WHY project (Stevens,
Collins, & Goldin, 1982) studicd rainfall. The Stcamer projcct (Hoflan, Hutchins, & Weitzman, 1984) studicd naval
stcam plants. These projects gradually cvolved into long-tern, basic rescarch on the mental models that peopic
scem (o employ for mentally simulating physical systems (Gentner & Stevens, 1984). Rescarch on mental modcls
has progressed to the point that it might be worth rcopening the investigation into ITSs for physical systcms. The
student modeling problem will be very difficult.  The students’ responscs depend on mentally running a modcl
constructed from their understanding of the device. If the responsc is wrong, it could be because of a bug in how
they ran their mental modcl, or in how they constructed it, or in both. Relative to the three-dimensional space of
student models, mental models are a brand-new knowledge type -- a ncw column in the chart of Figure 2 -- with
uniquc new tcchnical issucs to conquer.
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DISCUSSION

The Expert Module
and
Student Modeling

James G. Greeno
Professor of Education
University of California, Berkclcy
Berkeley, California

I have very positive reactions to the two papers by John Anderson and Kurt
VanLchn. The rescarch that thcy have conducted and that they discuss in their
papers is scicnce of the highest quality and significancc.

The strength of this research comes partly from its being dirccted toward both
fundamental and applicd issucs at thc same time. The strong research in this domain,
much of which is reprcesented in the papers at this mceting, has addressed fundamental
qucstions in cognitive scicnce and principles of technology at the same time that it
has produced significant ncw resources by dcveloping new systems involving
advanced tcchnology. Onc cxample, in  Anderson’s work and in the
ALGEBRALAND program that Richard Burton discusscd, is thc devclopment of
graphics systcms to display the search trces gencrated during solution of problems in
gcomctry and algebra. These systems arc bascd on the theorctical analyses of the
cognitive processes involved in the tasks. Thcy also provide new rcsources for
instruction, enabling studcnts to rcflect on and improve aspects of their performance
that arc normally tacit and thercfore inaccessible to cfforts to improve them.
Another cxample is the DEBUGGY systcm of analysis that VanLchn discussed,
which is based on a thcorctical analysis of a structurc of corrcct and incorrcct
proccdurcs in a domain, which provided a ncw lcvel of computational power in
intclligent diagnostic programs, and which VanLchn (1983) uscd as a powerful tool in
further advanced basic rescarch of the learning on proccdurcs.

I. AN AGENDA OF RESEARCH AT TWO LEVELS

My discussion of thesc issucs will be gencral, involving an assessment of the
currcnt statc of rcscarch, its prospects for usc in the short-term and intermediate-term
futurc, and somc important qucstions that should be addresscd now for use in a longer
term. There arc intcresting, dctailed qucstions that could be discussed, but I havc
choscn to focus on morc gencral issucs partly because the details will undoubtedly be
actively considered in the ongoing proccss of scicntific work.

As I scc the situation, there arce scveral important rcsults of recent rescarch in
cognitive scicnce and artificial intelligence that should be actively exploited in the
tcchnology of intclligent tutoring systems. In thc currcent statc of our scicntific
knowicdgc on thesc issucs, we nced to focus on applicd rescarch that will show how to
design instructional systems that arc morc powerful because of the insights that have
been achicved in the fundamcental rescarch conducted in the last 15 ycars or so. In
addition, therc arc somc crucial fundamental issucs about the naturc of knowledge and
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cognitive skill that rcquire attention. The state of knowledge regarding this sccond
sct of issucs is that very recent results arc pointing thc way toward research that can
fundamentally alter our conceptions of the goals and mcthods of instruction,
especially in technical domains.

An implication of this analysis is that some attention should be given to how
to improve thec interaction between rescarch and practice. In contrast to the physical
and biological sciences, where there are very substantial institutions of cnginecring
rescarch, behavioral and cognitive sciences lack significant resources that arc
dedicated to the kind of research necded to develop new technology based on ongoing,
fundamental rescarch progress. We necd to go beyond the consideration of how to
use rescarch findings in spccific arcas and attend to the decvelopment of gencral
structures that will facilitate the morc cffective use of advances in research.

II. APPLIED RESEARCH BASED ON RECENT FUNDAMENTAL PROGRESS

There is a slogan for this section: If you know, in detail, what you want to teach, you
can design a better way to teach it.

The strong technological developments that arc described by Anderson,
VanLehn, and others at this mecting rest mainly on a major scientific development in
which we have learned how to analyze knowledge structures required for pcrforming
instructional tasks. There now arc about a dozen good examples of tasks for which
the needed cognitive structures havc bcen analyzed and represented in the form of
computational models that simulatc successful performance. The scientific capability
now exists to take a significant, well-defined instructional task and identify a sct of
cognitive structurcs and processes that are psychologically plausible and arc sufficicnt
to perform the task successfully.

It is important to remember how recently this capability has been developed in
cognitive science. Cognitive scicnce itsclf has only existed for about 30 ycars, and the
cffort to apply cognitive analyses to instructional tasks has been active since about
1974. The fact that this capability has developed within two or at most thrce decades
indicates an unusually productive rescarch program.

The ability to model successful performance is the basis of the expcrt model
and diagnostic systems that Anderson and VanLehn discussed. We can take a task
like geometry or LISP programming or subtraction, and we build a program, using
methodological and theorctical resources such as production rules and schemata, so
that we can come to a better understanding of how people perform the task
successfully. Models of this kind can be useful for instructional designers bccause the
models tell us, at Icast hypothetically, what it is that has to be acquired in thc mental
structures of students in order for them to do the task. If a program can do the task
and if we can instruct students so that their knowledge is like the program, then the
students will be able to do it, too. That provides thc kind of expert model that
Anderson discussed, as well as the kind of student model that VanLehn discussed. In
diagnosis, the modcl of corrcct performance provides an analysis of components of
knowledge, and thc diagnostic task is to determine which of those componcnts have
been acquired by the student. A model of successful performance also provides a
basis for detcrmining fccdback that is targeted toward the student’s acquisition of
specific cognitive components, cithcr by correcting students’ errors or in intclligent
coaching systems. It also can bc uscd as the basis of specially designed displays of
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information related to componcnts of knowlcdge that are usually tacit, as in the case
of Andcrson’s tutoring systems in which strategic aspccts of knowledge arc
represented explicitly as the goals of a scarch trec.

Although the ability to construct models of instructional tasks plays a crucial
role in the new developments in instructional tcchnology, it does not in itself solve
any significant instructional problems. Important rescarch qucstions have to be
answered to provide additional information about how to present instruction that uses
the ideas in the model. Significant rcsearch was required after there was an adequate
model of the procedure of subtraction beforc the DEBUGGY diagnostic system was
developed, and important questions remain unanswercd about thc processes that
generate buggy performance, the stability of bugs, and the organization of the spacc
of procedural flaws. When a modcl of successful performance is used as a basis of
giving students feedback, there are important questions about the manner in which
fecdback can be given effectively. A model is helpful in designing computational
coaches or explicit displays of tacit information, but thc characteristics of those
instructional systems are not determined by the fcatures of the model, and research is
nceded to guide the design and evaluation of the systems.

In addition to the need for rescarch for developing cffective components of
instruction, there are important tasks beforc us in extending the technological
capabilitics that we have now. I think therc is gencral agreement that we are just
beginning to develop instructional systems in which the ideas in current prototypes
will be built into larger curriculum units. Most current systems provide instruction in
relatively small units, and considerable further work is nceded to develop capabilitics
for providing larger intcgrated systcms with sophisticated diagnostic and coaching
systcms.

Another major issue for rescarch on systems for development in the short term
is that they should be built with the understanding that they should change after they
are in place. Modifiability should be built into the design of systems when they arc
devcloped. Provisions should be made for changes that are called for by improved
understanding of the functions of the system. In addition, the social context in which
the systems are used will influcnce the ways that the systems function, and we need to
direct rescarch attention to understanding ways to make technological systems flexible
and uscful in the various social contexts in which they will be used.

III. LONGER-TERM RESEARCH ISSUES

A slogan for this section is: [f what you really want to teach is different from what
you think you want to teach, then teaching what you think you want to teach berter may do more
harm than good.

Understanding thc requircments of a task in dctail can be misleading if the
analysis neglects aspects of understanding and rcasoning that arc important in a
broader context. An cxample is in the training that is given in the Navy’s Basic
Elcctricity/Electronics coursc, which Mary Rilcy (1984) studied in her disscrtation.
That coursc is based on an analysis of behaviors requircd to solve a set of
instructional problems, mainly involving application of Ohm’s Law and Kirchhoff’s
Rulcs to calculate quantitative propcrtics of circuits. Riley’s rcsearch was motivated by
the high rate of attrition in the BE/E course, and she studied individuals comparable
to Navy rccruits as they studied the instructional materials and worked on test
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problems. She discovered that the instructional materials did not address important
aspects of the knowledge required to understand circuit diagrams and the concepts of
voltage, resistance, and current. [ belicve that the instruction was designed well for
the purpose of training students in the instructional tasks of solving circuits, according
to the analysis of bchaviors involved in those tasks. The difficulty is that thc analysis
was rclatively shallow and did not indicate thc necd for somec additional cognitive
structurcs and proccsses that students also nced but that are not obviously necded for
pcrformance of thc tasks that were analyzed.

The specific dcficicncy that Riley discovered in the BE/E course can be
rcmedicd using the kinds of idcas that current cognitive analyses offcr. Indeed, Riley's
dissertation provides a nicc example of onc way that cognitive science has advanced
in recent years to cnable considcration of issucs that werc not accessible to analyses in
carlier behavioral terms. But therc is an important moral to the story. At any time,
the concepts and mecthods that we have for analyzing knowledge and cognitive skill
are incomplete. We necd to rccognize the likclihood that our current understanding
omits some important factors and that further work is nceded to clarify thosc factors.
As that work procceds, of course, we need to provide the best instruction that we can
based on the best understanding that is available, but it is important to keep in mind
that there is room for improvement both in the instruction we give and in the theorics
on which that instruction is based.

The next part of this commentary raises some issues that I think are likely to
be involved in the next phase of thcoretical development beyond the understanding
that we have now. Within the last 12 ycars or so, we have developed the capability of
analyzing knowledge structurc for instructional tasks. In the next 12 years or so, we
should expect some further progress. Recent research suggests three aspects of expert
knowledge and reasoning that are likely dimensions for that progress. The dimensions
involve (a) informal, qualitative rcasoning by experts in subject-matter domains; (b)
knowledge for reasoning that is tightly coupled to situations of practice; and (c)
characteristics of knowledge that make it generative for understanding and Icarning
in ncw situations.

The importance of qualitative reasoning, often called intuition, is widely
recognized. Experts in many fields attribute their creative achievements to hard work
and intuition; they insist that formal knowledge is at most a prerequisite of the
capabilities needed for successful professional work in a field. The informal, intuitive
aspects of expert reasoning have not been taken into account significantly in models
used for development of instructional systems. Indeed, it is probably not an accident
that we have had our main successes with cognitive skills in formal, symbolic domains
such as subtraction, algebra, gcometry, and LISP programming.

The scientific analysis of informal, qualitative reasoning is in an early stage,
but some promising beginnings have becen achieved, especially in work such as that of
deKleer and Brown (1984), Forbus (1984), and Johnson-Laird (1983). Much remains to
be done, but a reasonable prediction is that within thc next decade, therc will be
considerable progress toward a rigorous analysis of informal, qualitative rcasoning.
As we develop this analysis, we will want to be able to dcvelop instruction that will
tcst idcas about the acquisition of intuitive understanding. Indeed, a promising
strategy for developing the analysis includes dcveloping instructional systems that can
change students’ intuitions in subjcct-matter domains and using the results of those
systems as material for scientific study.

68




A second dimension of expert rcasoning that is indicated in current research is
its situatcd character. In most of the rescarch that has been conducted on expert
knowlcdge, problems that students have to solve in order to get good grades in classcs
arc given to advanced students or professors, and their cxpertise has been assessed by
their performance on these textbook problems.  Our picture of cxpertise, then, is
situatcd in the context in which pcople go to school. Everyonc with practical
cxpericnee on a job has good recasons to say that that is probably going to give us a
somewhat limited view. It is important to rccognize that. It is anothcer thing to figurc
out what we ought to be doing instcad.

One important current project is being conducted by Edwin Hutchins (1986), who
has been studying quantitative reasoning by looking over the shoulders of navigators--and
sometimes ducking ou: of their way--looking at the process of steering a ship so that it gets
into the harbor and doesn’t run into things along the way. A great deal of sophisticated,
quantitative reasoning goes on in the chart room. At the same time, people are yelling at
each other and getting readings, some of which come in on schedule and some of which have
to be requested. Computations are being done, some by standard calculating methods and
some with special devices that use the spatial properties of maps to convert bearings to
positions. The data give a very strong impression that the expertise of these senior navigators
is only remotely related to formal mathematics.

Hutchins' findings arc consistent with other rcscarch in quantitative reasoning
in strcct markets in Recife, Brazil, and in supermarkcts and kitchens in Orangc
County, California (c.g., Lave, Martaugh, & de la Rocha, 1984). A common feature of
the results is that reasoning is primarily focuscd on solving problems that arise from
the structure of activity, rather than the structure of the formal system ot
mathematics, if you'rc working on portions of food according to some diet. Lave
refers to this as the structuring resource that comes from the setting in which you're
engaged in a practice. The knowledge acquired in school mathematics is structured by
the instructional sctting, the arrangcment of ideas, and the sequence of the skill that is
becing taught. On a battleship the sctting that structures the problem is the task of
getting the ship where it is supposed to go and not running into things along the way.
Mathematics comes up, but it comes up in a context that is not intrinsically
mathematical. Usually mathcmatics is nceded when there is some kind of impasse in
which a person’s direct knowledge is insufficient.

Understanding thc knowledge that cxperts use in situations of practice is a
major challenge in research. Some interesting clues arc in findings that Julian Orr
(1987) has obtained in studying the interactions that technical service representatives
have when they talk about their work. They scldom talk to each other over lunch
about information in the training manuals that they rcad when they went to school.
They tell each othcr storics about intercsting successes or other dramatic events that
have occurred in their work. Orr’s findings suggest that important components of
expert knowledge may be cncoded as a kind of lore that relates directly to the setting
of the practice. [t seems likely that this kind of cthnographic rescarch can provide
important future information about the nature of knowledge that is used by experts in
their practice. The results of this rescarch can make a fundamental difference in the
way wc design instruction because it challecnges the academic principles that have
been the basis of organization in virtually all the instruction that we have.

The third dimension that also presents a fundamental challenge to our way of

thinking about instruction is the gencrative character of cxpert knowledge. This issue
is being clarified in rescarch donc mainly with young children, which is investigating
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the development of conceptual understanding in domains of knowledge. An
important recent example is Susan Carcy’s (1985) work on the changes in the way
youngsters think about processcs in the domain that adults would think of as biology.
A major shift occurs roughly between the ages of 6 and 10 years, involving a
fundamental change that has many of thc propertics of the change in a scientific
theory. When children are about 6 ycars old, they think about life and living
functions according to a sct of concepts that Carcy calls naive psychology. The
cxplanatory system for undcrstanding biological processes is basically a systcm about
wants, desires, and intentions. For ecxample, people cat because they are hungry. But
10-year-olds have developed a sct of concepts and principles that can be called a naive
biology, in which biological processes arc understood in tcrms of biological function
such as nourishment. For example, 10-ycar-olds say that pcople cat becausce they need
food to stay alive, or because food helps them grow.

Examples like Carey’s analysis cmphasize that scrious changes in conceptual
understanding arc not rarc events. They are, in fact, the stuff of human undecrstanding
and cognition about systems. I think that as we come to understand expertise more
thoroughly, we will come to rcalize that thcre is a subtle and claborate structurc of
ideas and understanding that is built into the practice that cxperts acquire after ycars
and ycars of experience.

IV. STRUCTURES OF INTERACTION BETWEEN RESEARCH AND
PRACTICE

Finally, I rciterate my concern about the infrastructure of our work as
scientists and enginecrs and practitioners. I believe that we need to think very hard
about how to create networks of rescarchers and practitioners that feed in all
dircctions. It scems clear in our field, as it has been in many other scicntific ficlds,
that the view of generating ideas in basic research that thcn drive the development of
technology is grossly oversimplificd. The effort to develop complex computational
systems leads to new idcas and thc refinement of theories, and the use of
technological resources in practicc provides important information for evaluating and
modifying theorics as well as technology. In any case, we need to find structures in
which interactions among thc activitics of basic science, development of advanced
technology, and instructional practice will bccome unavoidable. We need institutional
structures that go beyond encouraging people to talk back and forth, and in which the
kinds of interactions that arc esscntial to the development of the field will happen as
a matter of coursc. ’

V. CONCLUSION

1 have characterized two levels of research issues that are important for the
development of intelligent instructional tecchnology. The ability to analyze knowledge
structures for instructional tasks is a major scientific achievement that can be put to
use in applied research immcdiately in studies that would include devclopment of
integrated systems that use expert modecls, intelligent diagnostic systems, coaching, and
model-based displays of information that makes tacit knowledge explicit. Further,
there are fundamcntal rescarch questions that should be addressed to dcepen our
understanding of cxpert knowledge and reasoning, including the characteristics and
role of qualitativc mental modcls, the naturc of situated reasoning, and the naturc of
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generative knowledge.  All of these are worthwhile problems, and good progress can
bec madc on them with available scientific concepts and mcthods, if the work is
supported. T hope that it will be, and I also hopc that some of the resources that arc
availablc will be allocated to strengthening the structure of scientific and engincering
resources that arc nceded for the long term, cspecially those that foster interaction
among basic scicnce, cngincering, and instructional practice.
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CHAPTER 4

CURRICULUM AND INSTRUCTION IN AUTOMATED TUTORS

Henry M. Halft
Chief Scientist
Haiff Resources, Inc.

People learn many things without benefit of instruction, but we are distinguished as a species by
our ability to pass knowledge from the competent to the less competent. To endow machines with this
same instructional ability is, to a large extent, to cast the principles of instruction in precise information-
processing terms. This chapter assesses the progress that has been made on one important aspect of
this task; namely, that of codifying the principles of tutoring.

Intelligent Tutoring Systems

This chapter is concerned with only one genre of instruction, tutoring?, and with only one design
approach to this instruction, that based on antificial intelligence technologies. It is necessary therefore to
say a bit more about what constitutes an intelligent tutor from an instructional point of view.

Tutoring. Tutors can use many different instructional techniques, but tutorial interactions,
however they are conducted, must exhibit three characteristics:

1. Atutor must exercise some control over curriculum: that is, the selection and sequencing of
material to be presented.

2. Atutor must be able to respond to students’ questions about the subject matter.

3. A tutor must be able to determine when students need help in the course of practicing a skill
and what sort of help is needed.

Some tutors, automated and human have very weak models for one or two of these functions,
but the design of any tutorial system must include some approach to each.

Curricutum and instryction. By curriculum | mean the selection of and sequencing of material to be
presented to students. By instruction, | mean the actual presentation of that material to students.

For teaching methods such as lectures, which are less dynamic than tutoring, both curriculum and
instruction can be developed prior to delivery, with as much or as little accountability to principle as the
developers feel is needed. Tutorial systems afford no such luxury because a tutor, human or machine, is
bound to tailor the selection, sequencing, and methods of delivering instruction to meet the ongoing
needs of individual students. Developing curricula and instruction for tutoring therefore is the problem of
developing methods for selecting and sequencing material and methods for presenting that material.

The organization of this paper is straightforward. After a brief discussion of some issues central to

1 This is not to say that tutoring per se is the only way that automated tutors can function. Team or group
instruction could be and has been (Brown, Burton, & DeKleer, 1982) implemented to considerable
advantage with automated tutors.
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intelligent tutoring, the major approaches to curriculum and instruction in automated tutors are
considered. The chaptler concludes with a discussion of major research issues and some tentative
guidelines for implementing automated tutors.

Three Central Issues

Throughout the chapter, several major issues or distinctions will recur. They deserve some
mention at the outset. The common view of learning and teaching tends to obscure these distinctions,
but they are all too evident in the context of intelligent tutoring systems.

Jhe nature of learning. Most approaches to instruction are based on an unspoken "blank slate”
assumption. Entering students who cannot perform a particular task or recall a particular fact are viewed as
lacking the skili or missing the fact. Although this assumption may hold in a number of situations, there
may well be others in which students possess all the wrong skills or all too much kncwledge. Since the
time of Socrates, scholars have recognized this possibility, but it has certainly not received widespread
recognition in current educational practices. There is little in advice to teachers or instructional designers
that directs them to the process of weeding out inappropriate knowledge at the same time that they are
sowing useful knowledge.

The pature of teaching. The view of learning that dominates current instruction is derived from
studies of how individual organisms manage to learn on their own in a variety of environments. The
unwritten assumption behind this approach is that instruction shouid be desighed to take best advantage
of the mechanisms of individual learning. However, much learning, and indeed the learning that
distinguishes us as human, is a cooperative venture that depends crucially on certain conventions
(primarily linguistic) for communication among students and teachers. Since communication is a
particularly salient aspect of tutoring, we need to understand instruction not only from the point of view of
conventional learning theory but also as a process of communication.

Ihe nature of the subject matter. The short history of automated tutoring exhibits a curious split in
the choice of instructional objectives, a split that has implications for all aspects of the field including
curriculum and instruction. Some tutors, which are calied expository tutors, are primarily concerned with
factual knowledge and inferential skills. They teach students a body of factual knowledge and the skills
needed to draw first-order inferences from that knowledge. They rely on declarative knowledge in the
sense discussed by Anderson (this volume). Dialogue is the primary instructional tool used by these
tutors. Carbonell's (1970) tutor, for example, engaged students in systematic discussions of South
American geography. Collins and Stevens (1982) describe a tutor that uses dialogue to leach cenain
principles of meteorology.

Other tutors, which are called procedure futors, teach skills and procedures that have application
outside of the tutorial situation. Although memory for facts is impcrtant in learning such skills, tutors of this
genre are much more concerned with the procedures that operate on memory. As a consequence,
procedure tutors function much more like coaches. They present examples to exhibit problem-solving
skills, and they pose exercises for purposes of testing and practice.

Curriculum

The problem of curriculum can be broken into two problems, formulating a representation of the
material and selecting and sequencing of particular concepts from that representation. In automated
tutors, represeanting knowledge for instruction involves, at the least, an adequate expert module of the
type discussed by Anderson (this volume). Only one topic need be added to his discussion, and that is
for propaedeutics, the knowledge needed for learning but not for proficient performance. A brief
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treatment of propaedeutics precedes the major topic of this section; namely selection and sequencing of
material.

Propaedeutics: Representing Knowledge for instruction

The most common strategy among those few who design automated tutors is to adopt an expert
model as the representation of material to be taught. The rationale for this strategy is that leaming involves
progressive acquisition of the cognitive structures that support expert performance. Under many
circumstances, this strategy may be the most appropriate, but there also may be cases in which a tutor
should use a knowledge representation that is suited to instruction but not to skilled perfformance. One
example of such a representation is NEOMYCIN (Clancey, 1984; Clancey & Letsinger, 1981), described
by Anderson (this volume). Another example is Heller and Reif's (Heller & Reit, 1984; Reif & Heller 1982)
verbal representation of some procedures for solving physics problems (see Table 4.1 for an example).

TABLE 4.1
Procedure for Generating a Theoretical Problem Description in Mechanics
. (taken from Heller and Reif, 1984)

Belevant times and systems: At each relevant time (previously identified in the basic description of the
problem) identify those systems relevant in the problem because information about them is wanted or
because they interact with such systems direclly or indirectly.

Description of relevant systems: At each relevant time, describe in the following way each

relevant system (it simple enough to be considered a single particle), introducing convenient
symbols and expressing simply related quantities in terms of the same symbol.

Description ot motion: Draw a "motion diagram” indicating available information about the position,
velocity, and acceleration of the system.

Description of forges: Draw a “force diagram” indicating available information about all external
forces on the system. Identify these forces as foliows:

Short-range forces: Identity each object which touches the given system and thus
interacts with it by shornt-range interaction. For each such interaction, indicate on the
diagram the corresponding force and all available information about it.

Long-range forces: Identify all objects interacting with the given system by long-range
interactions. (Ordinarily this is just the earth interacting with it by gravitational interaction.)
For each such interaction, indicate on the diagram the corresponding force and all
available information about it.

Chacks of description: Check that the descriptions of motion and interaction are qualitatively consistent
with known motion principles (e.g., that the acceleration of each particle has the same direction as the total
force onit, as required by Newton's motion principle ma = F).

These intermediate or propaedeutic representations serve to support performance while more
efficient procedures are acquired through praclice. Propaedeutic representations have two
characteristics. First, they make explicit the functional basis of the procedures used in exercising the skill.
Second, they are manageabie with the limited cognitive resources available to students. Thus they serve
(a) o relate theory 1o praclice; (b) to justify, explain, and test possible problem solutions; (c) as a stepping
stone to more efficient problem-solving strategies; and (d) as strategies for management of working
memory during intermediate stages of learning.
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Anderson, Boyle, Corbett, and Lewis (1986) have recently provided some insight into the use of
these intermediate representations in instruction. They suggest that declarative knowledge is encoded in
special schemata called PUPS? structures which indicate, among other things, the form and tunction of
the declarative knowledge that they encode. These schemata are interpreted in the course of working
exercises, and the trace of that interpretation is the procedural knowledge underlying the skill to be
learned. Although a declarative representation plays no role in the exercise of an established skill, it is
crucial to the acquisition of that skill.

Selection and Sequencing

The differences between expository tutors and procedure tutors are evident in the problems
associated with selecting and sequencing material. For expository tutors, the problems are those of
maintaining focus and coherence and of covering the subject matter in an order that supports later
retrieval of the concepts being taught. Procedure tutors have the additional problem of properly ordering
the subskills of the target skill and selecting exercises and examples to reflect that order.

Jopic selection in expository tutors. Curricula in expository tutors must deal with two sources of

constraints. One set of constraints arises from the subject matter. Topics must be selected to maintain
coherence and to convey the structure of the material being taught. A second set of constraints comes
from the tutoring context. Selection of some topic or fact for discussion must reflect the student's reaction
to previous iutoring events.

The methods used to construct curricula that reflect the structure of the material have been the
subject of much research both in the context of automated tutors and in the larger educational community
itself. Work at Bolt Beranek and Newman, starting with SCHOLAR (Carbonell, 1970) and continuing with
research by Collins, Stevens, and others (Collins & Stevens, 1982; Collins, Warnock, & Passafiume,
1975, Stevens & Collins, 1977, 1980) has systematically examined how both human and automated
lutors plan curricula. Influential work of the same sort can be found in other educational literature
(Ausubel, 1968; Reigeluth & Stein, 1983).

The general conclusion of this work is that curricula should conform to an approach called web
teaching by Norman (1973). Two principles guide the selection of materials in web teaching:

1. Relatedness--give priority fo concepts that are closely related to existing knowledge, and
2. Generality--discuss generalities before specifics.

Web teaching can be justified by reference 10 a complementary notion cailed web learning.
According to this notion, students develop cognitive structures that reflect the curriculum. The structure
provided by web teaching is a framework of general concepts that is anchored in existing knowledge and
that serves to support more detailed knowledge.

Web teaching and related approaches provide a static framework for curricula. They do not
address the powerful mechanisms that tutors can use to formulate and reformulate curricula within the
dynamic context of the tutoring situation. They do not tell us, for example, whether the curriculum should
be redirected as the result of some unanticipaled question from the student.

Recently, Woolf and McDonald (1985) have developed a sophisticated methodology for
studying dynamic formulation and reformulation of curricula. This methodology, implemented in a program

2"PUPS" stands for the Penultimate Production System, a rule-based system that Anderson uses to
formulate his cognitive theory.
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called Meno-tutor, has two distinct mechanisms for directing the tutorial dialogue. One mechanism
implements planning mechanisms like web theory for maintaining coherence and focus in the dialogue.
These mechanisms are represented in an ATN3 grammar, called a Discoyrse Management Network
(DMN).

Meno-tutor has a second curricular mechanism that allows it to respond to a student’s particular
situation. This mechanism is a set of meta-rules that examine the overall context of instruction for
conditions that dictate a change from the normal path of instruction represented in the DMN. The meta-
rules consist of conditions on the overall state of the DMN and actions that can effect transitions not
aliowed by DMN's syntax. For example, when the tutor finishes the discussion of one topic, a meta-rule
assesses the tutor's overall knowledge of the student's competence, and, if it turns out that the tutor
knows little about the student, the meta-rule will drive the tutor to a strategy calling for exploration of
student knowledge.

Exercise and example selection in procedure tutors. Procedural skills are nearly always taught by

exercise and example. In these cases the major curricular issue is that of choosing the correct sequence
of exercises and examples. Ideally, the choice of exercises and examples should be dictated by a model
of learning, but, as Anderson (this volume) has pointed out, there is no theory of learning that is precise
and powerful enough to support an interactive tutoring system. Research on the selection and
sequencing of exercises has suggested several standards.

1. Manageability. Every exercise should be solvable and every example should be
comprehensible to students who have completed previous parts of the curriculum.

Recommendations for meeting the manageability criterion are well known by researchers
concerned with instructional systems design (ISD). Gagne and Briggs (1979) recommend analyzing the
skills to be taught into a prerequisite hierarchy of instructional objectives. The highest level of the
hierarchy consists of primary objectives. Each descendant of each objective in the hierarchy consists of
that objective’s immediate prerequisites, called enabling objectives. Gagne and Briggs recommend a
curriculum that devotes a single lesson to each instructional objective, that imposes a mastery criterion on
the learning of each lesson, and that presents the lesson for each objective after the lessons for its
enabling objectives.

ISD also makes some recommendations concerning the fine-grained structure of curricula within
lessons. These recommendations rely on a taxonomy for the cognitive features of instructional objectives
and rules that construct lessons based on the classification of each objective in the taxonomy. For
example, component display theory (Merrill, 1983) provides two recommendations for the selection of
examples and exercises in classification learning. The divergence principle calls for broadly representative
sampling of instances, and the matching principle calis for presentation of both positive and negative
instances of the concept, procedure, or principle being taught.

In summary, manageability can be achieved by isolating each objective to be taught, by providing
enough material to allow students to master each objective, and by teaching prerequisites first.

2. Structural transparency. The sequence of exercises and examples should reflect the structure
of the procedure being taught and should thereby help the student induce the target
procedure.

3Augmented Transition Network (ATN) grammars are general and powerful mechanisms for representing
procedures. Their principal use is for natural-language understanding, but they can serve, as in Meno-
Tutor, to represent complex procedures for other tasks. See Winsion (1984, pp. 304-309) for a technical
discussion of these grammars.
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This principle proposes that curriculum is a form of communication with the student in that the
sequence of exercises and examples tells the student something about the subject matter. Theories of
this kind of communication must therefore have two components. They must specify how to derive a
sequence of exercises and examples from the structure and content of the procedure being taught, and
they must explain how a student can interpret the sequence in order to learn something about the
procedure.

To date, only two efforts have addressed both components of the structural transparency issue.
Smith, Walker, and Spool (1982) proposed certain structuring principles for an existing course in symbolic
logic that consisted largely of exercises and examples of proof problems. Smith et al. aiso constructed a
learning model that used these principles to induce the strategies supporting skilled problem solving in
the course. Smith et al.'s learning model is schema driven. It matches each unit of the course (e.g., a
sequence of examples) to a template that specified an induction principle. The induction principle can be
used to infer some problem-solving strategy from the unit. Smith et al. argued that the templates
constituie communicative conventions shared by instructional designer and student for the purpose of
conveying procedurai knowledge through curriculum structure.

A similar but more thorough line of work can be found in VanLehn (1983, 1985, in press). His
concem was with curricula in which students induce a procedure solely from the exercises and examples
presented to them. Most of his work focused on curricula for multicolumn subtraction problems and
student performance in those curricula. In a theory of these curricula called step theory, he proposed that
leaming is possible in such cases only if certain conventions, called felicity conditions, govern the
construction of the curricula. The felicity condition that relates to selection and sequencing requires that
the curriculum be divided into discrete lessons, each of which adds a single decision point or step in the
procedure to be learned (hence the name step theory). The examples and exercises in each lesson can
use only the step to be learned or steps previously addressed in the curriculum. Although VanLehn did
not present a particular leaming model in his theory, he did demonstrate that no learning procedure could
possibly induce the correct procedure uniess the curriculum conforms to step theory and the procedure
takes advantage of this fact.

3. Individualization. Exercises and examples should be chosen to fit the pattern of skills and
weaknesses that characterize the student at the time the exercise or example is chosen.

The approaches to manageability and structural transparency previously described are static in
that they do not take advantage of a tutor's ability to dynamically formulate a curriculum to conform to the
ongoing instructional context and, in particular, to the student's changing state of mastery. Each exercise
or example should be chosen so that it is (a) manageable with skills already possessed by the individual
student, and (b) easily related to skills already possessed by the individual student.

BIP-Il (Wescourt, Beard, & Gould, 1977) is the only example of a procedural tutor that addresses
these desiderata. BIP-Il teaches the BASIC programming language by offering students exercises that
can be solved in a powerful but nonintelligent programming environment. Of interest here are BIP-II's
methods for selecting each exercise.

The three components of BIP-Il are illustrated in Figure 4.1. A semantic gkills network represents
some 93 skills needed for competent BASIC programming and the salient pedagogical relations among
them. A sludent profila4 maintains an assessment of the student's mastery of each skill in terms of five
states of learning. This profile is updated after every exercise, based on student performance. An
exercise library contains a large number of exercises and the skills required for each.

41 hesitate to call this a student model in the sense in which VanLehn (this volume) uses the term because
it is not an information-processing account of how student : solve problems in the course.
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Figure 4.1. Components of BIP-II.

These components allow BIP-il to dynamically address manageability and structural lransparency
in its selection of exercises. Thal is, ils selection algorithm chooses exercises that have some optimal
combination of learned and unlearned skills and contain unlearned skills that are conceptually related to

learned skills.

Selection and sequencing criteria. What lessons do the foregoing examples and suggestions

have for curricula in automated lutoring systems? The primary one is that one should look more fo the
overall goals of curriculum construction than to principles for design in particular situations. Curricula for
lutoring siluaiions serve several functions:
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1. A curriculum should divide the material to be leamed into manageable units. These units
should address at most a small number of instructional goals and should present material that
will allow students to master them.

2. A curriculum should sequence the material in a way that conveys its structure to students.
3. A curriculum should ensure that the instructional goals presented in each unit are achievable.

4. Tutors should have mechanisms for evaluating the student reaction to instruction on a
moment-to-moment basis and for reformulating the curriculum.

Instruction

This section concems the instructional methods that an automated tutor might use to deliver a
curriculum. These methods must cover initial presentation of the material, ways of responding to
students’ questions, and the conditions and content of tutorial intervention.

Presentation Methods

The methods used to present material depend on the subject matter and the instructional
objectives. Expository tutoring uses dialogue as the chief method of conveying material. Tutors oriented
towards procedural skills use examples and coached exercises to develop those skills.

Dialogue. The issues involved in tormulating dialogue for expository tutors are similar to those
involved in formulating curricula for these tutors. In particular, dialogues need to be planned to address
the instructional objectives at issue, and dialogues must be sensitive to the evolving tutorial context.

Collins and Stevens (1982) and Collins et al. (1975) have derived some general guidelines for
conducting tutorial dialogues once the instructional objective of the dialogue has been established. They
treat three types of objectives: the teaching of facts and concepts, the teaching of rules and functional
relations, and the teaching of skills for deriving these rules. Note that this classification corresponds to
that used in recommendations from ISD (Gagne & Briggs, 1979; Merrill, 1983).

Table 4.2 summarizes Collins and Stevens' guidelines for dialogues addressing each objective.
Teaching of facts and concepts is accomplished by asking for or explaining the material. The decision to
ask or tell is made on the basis of the impontance of the material and the student's knowledge thereof.
Teaching of rules in tutorial sessions usually involves inducing the student to consider the relevant data
and to formulate the rule. This can be done by presenting case data that makes the rule clear or by
entrapment strategies that enable the student to eliminate incorrect versions of the rule. Skills for deriving
rules are taught as procedures. These procedures are broken down into their components (e.g., listing
factors, generating cases to specification), and exercises and examples are provided that address each
subskill.

The dialogue plans suggested by Collins and Stevens are interactive in the sense that particular
tutorial utterances are conditioned by the student's responses, but these dialogues do conform to rigid
plans that cannot be reformulated in the middle of an interaction. By contrast, Woolf and McDonald's
(1985) Meno-tutor, which has been described previously, offers the same dynamic flexibility at the
instructional level as it does at the curricular level. Meno-tutor's DMN has some 27 instructional (as
opposed to curricular) states, each representing a different method of presenting tutorial materials. The
DMN, for example, makes a distinction between feedback used to dismiss a topic (a simple "no" or
"well...") and that used to maintain the topic at the center of attention.
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TABLE 4.2
Tutorial Dialogue Strategies for Difterent Instructional Objectives

I onalObiedh 5 -

Teach facts and concepts Elicit fact or concept

Explain fact or concept Teach rules and relations
Case selection strategies
Entrapment

Teach induction skills Exercises and examples

oriented to subskills

More to the point, meta-rules aliow for dynamic reformulation of the tutorial at the instructional level
as well as the curricular level. The method of presentation can therefore be determined by default
assumptions in the DMN, or, if circumstances dictate, by needs that arise in the particular instructional
context. Normal circumstances might, for example, dictate active correction of a student error, but Meno-
tutor possesses a rule that allows it to give a less emphatic correction if it decides that the student is
confused at that point in the dialogue.

Instructional meodeling. Instructional modeling, the use of worked examples or guided practice, is
a prime vehicle for introducing students to procedures that they must leamn. Essential to the success of
modeling in intelligent tutoring systems is the formulation and presentation of procedures for working the
examples. These procedures must be based on the representations (including propaedeutic
representations) that students need to acquire the target skills, and they must be presented to the
student in 2 manner that shows how each step applies to the case being modeled.

SOPHIE Il (Brown, Burton, & de Kleer, 1982) is one early example of a training system that faced
these issues. It demonstrated procedures for troubleshooting arbitrary faults in a simple electronic device.
The significance of Brown et al.'s work is in the discipline they used to formulate and present SOPHIE-II's
troubleshooting procedure. In particular, they restricted SOPHIE-Ii to general (device-independent)
procedures that were cognitively faithful to human troubleshooters, and they gave SOPHIE the facility to
verbally account for its troubleshooting decisions as it demonstrated these procedures.

Language is not the only vehicle that can be used to explain procedures during instructional
modeling. Hutchins and his colleagues (Hutchins & McCandless, 1982; Hutchins, McCandless,
Woodworth, & Dutton, 1984) developed a system (MANBOARD) to aid in the training of relative-motion
problems in naval surface operations. This system is able to demonstrate procedures and illustrate these
demonstrations with displays (like the one in Figure 4.2) of ships in both relative and geographic
coordinates. These displays make clear the geometric basis of the procedures being taught.

VanLehn (1983) found another important application of visual explanation, not in a tutoring
situation but in his examination of multicolumn subtraction procedures. He found that the indications of
crossing out and borrowing in worked examples (see Figure 4.3) were crucial to learning in that they made
explicit the intermediate steps of procedures. Without these indications, students are, in principle, unable
to induce the procedure from the examples given them in typical curricula. The import of this show-work
telicity condition is obvious for instructional modeling; a tutor should provide whatever description is
necessary to ensure that the student can grasp the intermediate mental steps of the procedure.

81




STOPPED *
, Run/Stop
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Have computer generate a new set of values

Figure 4.2. Display of Hutchins et al.’s Training System for Relative Motion Problems
(Hutchins, McCandless, Woodworth, & Dutton, 1984). The left panel provides a relative—motion
plot, and the right panel provides the corresponding geographic plot.

Answering Questions

Responding to questions is an essential function of human tutors, and one might expect to find
the same function in automated tutors. In fact, however, question answering has not been the focus of
many of the automated tutors that have been developed. The major stumbling block to effective question
answering, as Anderson mentions in Chapter 2, is the difficulty of natural language comprehension and
generation. One attempt to work around the problem can be found in SCHOLAR's (Carbonell, 1970) use
of a template-matching strategy to deal with students’ question~

SOPHIE (Brown et al., 1982) was a more sophisticated attempt to deal with both epistemological
and linguistic aspects of answering students’ questions. SOPHIE | (Brown, Burton, & Bell, 1974)
answered the questions of students learning to troubleshoot the device also used in SOPHIE 1l. Many ot
these questions, such as hypotheticals, might have required considerable search, but SOPHIE |
determined the answers by systematically running a mathematical model of the device under various
conditions. Because no reasoning was involved in these runs, SOPHIE | had no way to explain and justity
the methods used in the search and could therefore not produce the reasoning needed to answer such
questions. This problem and later observations of both novice and expert troubleshooters led Brown et
al. to the conclusion that causal explanations of devica function were necessary for understanding that
device. Subsequent investigations associated with and subsequent to SOPHIE iil have provided some
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deep insights in the field of qualitative mental models (de Kleer & Brown, 1983). These investigations are

treated more fully in Chapter 2.

Trading Hundreds First

There are 304 birds at the Lincoln Zoo.

126 birds are from North America.

How many birds are from other places?

“,. 3 - ."|f .
T o et

q 4 I v
Iy 8 -ft [\
Vi

X .7{30 ; )‘

304 - 126 = m =
Need more Trade 1 Trade 1 ten Subtract the ones.
ones? Yes. hundred for for 10 ones. Subtract the tens.
But no tens to 10 tens. Subtract the
trade. Need hundreds.
more lens. 9 <

210 2 1014 2 1014

304 39 4 304 BPA
-126 -126 -126 ~126
178

304 - 126 = 178

178 birds are from other places.

Subtract.
1. 401 2. 205 3. 300 4, 102 S. 406
- 182 - 77 - 151 - 4 - 28
6. 700 7. 608 8. 503 9. 300 10. 802
-513 - 39 — 304 — 28 - 9
1. 806 12, 500 13. 407 14, 904 15. 600
- 747 - 439 - 8 - 676 - 89
16. .00 17. 306 18. 204 19. 600 20. 508
- 56 - 197 - 7 - 29 - 429
21. 402 - 16 22, 700 - 8 23. 900 - 10t

Figure 4.3. A Page from a Third—Grade Mathematics Book lllustrating the Show—Work
Principle (Bitter, Greenes, Sobel, et al., 1981). Reprinted with permission of McGraw—Hill,
© 1981.

Tutorial Intervention
One of the prime benefits of tutoring is the opportunity that a tutor has to break into a student's

ongoing learning activities with whatever intervention is needed to speed the course of instruction.
Tutorial intervention is needed to maintain control of the tutorial situation, to protect the student from
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inappropriate or incorrect learning, and to keep the student from exploring paths that are not
instructionally useful®. Automating the process of tutorial intervention involves devising rules for
deciding when (or when not) to intervene, and {ormulating the content of the intervention.

Conditions for intervention. There are two major approaches to decisions about tutorial
intervention. Model tracing calls for inlervention whenever the student strays from a known solution path.
Issue-based tutoring calls for tutorial intervention only when it can make a positive identification of a
particular accasion for intervention.

Both Anderson and VanlLehn in this volume have explained the essentials of model tracing. A
tutor using this technique maintains a model of the student's cognitive processing as the student works
through an instructional unit. This model reflects the cognitive processes of a competent performer in the
instructional setting. As the student progresses, the model traces that behavior, attempting to match it to
one of the paths that could be taken by the ideal student. When the matching process fails, the tutor
intervenes with advice that will retum the student to a successful path.

Whereas model tracing suggests intervantion whenever the tuter cannot positively identify the
student's response, issue-based tuloring suggests intervention only when the tutor can make some
sense of the student's response. Issue-based tutoring has certain advantages over model tracing. For
one thing, it need not restrict its intervention to remedial instruction. Identifiably good performance may
be occasion for intervention along with identifiably bad performance. In addition, issue-based tutors can
be more informative in the content of their intervention since they can speak to the issue that caused the
intervention. Issue-based tutois ~an also function with less than perfect expert modules. Model-tracing
tutors will intervene even when the studerit finds a better approach than the expert module, but issue-
based tutors will remain silent in thes¢ circumstances.

These and other benefit: of iscue-based tutors are well-illustrated in the tutor called WEST
developed by Burton and Brown (1982) and described by Anderson (this volume). WEST offers advice to
the player of a computerized arithmetic game. It characterizes the game in terms of a number of issues or
strategies that may be of use to a player on certain moves, and it tutors in these issues by reminding the
student of them on carefully chosen occasions throughout the game. The primary criteria for these
occasions are the student's failure to use the issue when appropriate and evidence that the student's
knowl2dge of the issue is weak.

Systems like WEST offer the opportunity to try a variety of different principles for deciding on
intervention. These principles can address cognitive concerns. For example, WEST never intervenes on
the first few moves so that students can concentrate on the mechanics of the game. Other principles are
motivational. WEST, for example, does not offer advice if a player is doomed 1o lose no matter what, and it
congratulates players on exceptionally good moves.

There is no reason why model-tracing and issue-based techniques cannot exist in the same tutor.
Anderson's tutors (Anderson, Boyle, & Reiser, 1985; Anderson, Boyle, & Yost, 1985) incorporate some
aspects of issue-based tutoring within a model-tracing framework. In particular, they rely on a bug catalog
{discussad in VanLehn, this volume), a set of inappropriate or incorrect rules that ars commonly obsarved
at intermediate stages of learning. When the mode! trace matches one of these buggy rules, the tutor can
direct its advice to the bug.

Gentner (1979) and Gentner and Norman (1977) used another combined approach in Coach, a
tutor that monitors students learning a very simple programming language called FLOW. Coach was

SWhat constitutes an instructionally useful path depends on instructional objectives. [f these objectives
include teaching error-recovery skills, then allowing the student to make errors is an imporntant part of
instruction.
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designed to monitor their every keypress in real time® and to intervene under particular circumstances.

Coach's tutoring methods are based on a schema model that encodes the structure of the course
as well as the structure of the language FLOW. The model is hierarchical in nature with high-level
schemata representing, say, chapters in the manual or entire exercises, and low-level schemata
representing individual keypresses. Coach implements student modeling in both a top-down (model
tracing) and bottom-up (issue-based) fashion. It also has context-independent buggy schemata (e.g., a
schema for improperly ordered steps), an activation-driven mechanism for dealing with unfulfilled
expectations, and mechanism for separating bugs from slips on the basis of past performance. Coach is
an outstanding example of the leverage that sophisticated student and expert modules can contribute to
tutoring.

TIhe content of intervention. When a tutor decides to intervene it must aiso formulate the content
of the intervention. There is no uniform approach to the content of intervention among the few computer
coaches in the literature. The most obvious technique, directly correcting the probiem that caused the
intervention, is not used in any of them, and with good reason. Simply informing a student of the low-level
actions needed to recover from a bad situation would waste the opportunity for the tutor to teach students
about the situation. Thus, some tutors, such as those of Anderson (Anderson, Boyle, & Reiser, 1985;
Anderson, Boyle, & Yost, 1885) and WEST, provide advice at the next higher level of abstraction,
requiring students to apply this advice to their own concrete situation. Coach attempts to locate the
particular schema where the problem arose and offer advice addressing that schema.

Perhaps the most sophisticated approach to formulating the content of tutorial advice is described
by Goldstein (1982). He suggests that as students acquire skill, they can be characterized in terms of
increasingly sophisticated information-processing models. Tutorial advice should be responsive not only
to the student's particular ditficulty but also to the student's level of sophistication in the task. A neophyte
making an error should receive suggestions of a relatively coarse nature. A more sophisticated student
making the same error should receive advice ot a more detailed nature.

Research and Practice in Automated Tutors

From the foregoing description of where research in automated tutors has been over the past 15 or
20 years, we can look forward in several directions. This section begins with some suggestions for the
direction of research in the field. It does not present a laundry list of potential research projects, but
instead concentrates on three fundamental research issues. Briet suggestions for the kinds of projects
that might illuminate those issues are included. Also mentioned in this section are some lines of research
that, while interesting, are not appropriate for investigation at this time. Finally, for those interested in
immediate applications, a brief discussion of currently feasible implementations is presented.

Research Issues

A broad view of current research in intelligent tutoring systems and in education in general reveals
a few crucial issues that deserve serious consideration in any planned research and development effort.

1. An important concern in both research and development is the scope of the efforts; that is, the
range and combination of different situations which those efforts address. Researchers in
intelligent tutoring systems should look to ISC as a tield that is particularly concemed with the

61t is important to understand, however, that Coach was never implemented in real time. instead, it was
evaluated in terms of its ability to deal with replays of untutored students’ protocols.
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broad range of instructional applications.

2. Equally important from a scientific point of view is the necessity of being specitic about
machanisms. [t is not sufficient to simply build automated tutors that work. An effort must be
made to characterize the principles of learning and instruction that account for the
effectiveness of these tutors.

3. In addition, attention should be paid to the structure of the discipline. A major aim of the
research discussed here is the the codification of instructional principles. Future researchers
need to seriously question the extent to which these principles can be codified independently
of the material that they teach and to what extent they are an integral part of that material.

Automated tutors and instructional design. One of the major tasks facing researchers in
automated tutors is that of relating their work to other research in training and education. Other
instructional research has not been discussed prior {0 this section, because the relationship of research
on automated tutors to other instructional research is an important issue in its own right and because the
discussion would have been difficult to understand without the context set by the foregoing description of
research in automated tutoring.

Most instructional research is tangentially relevan, if it is relevant at all to automated tutoring
systems, either because it addresses other forms of instruction or is simply not sufficientiy oriented to
design to be of direct help. But one branch of instructional research, namely ISD, seeks to provide
methods that can be used to design instructional systems. Moreover, the ISD community is in general
agreement about the methodology that should be used to design instructional systems.

ISD is a mixed blessing for automated tutors. On the one hand, it offers the kind of systematic
decomposition of the instructional problem and the comprehensive coverage of instructional applications
that is sorely needed in the intelligent tutoring field at this point. On the other hand, ISD strives for a level
of specificity that is appropriate for instructional designers but nowhere near appropriate for computer
tutors. In addition, because it has not been particularly concerned with tutoring methods, it makes no
recommendations for the kind of student-tutor interaction that makes these methods so effective. To see
the research implications of these statements it is necessary to take a more detailed look at each one.

Starting with the benefits of an ISD view of automated tutors, note that ISD proposes a
decomposition of the design process that is consistent with the one discussed in this volume and in this
chapter in particular. 1ISD makes a distinction between analysis of instructional needs (the subject oi
Anderson's chapter) and development of curriculum and instruction (the subject of this chapter). Also,
ISD distinguishes between curriculum and instruction. Reigeluth and Merrill (1978) refer to these aspects
of instruction as macro- and micro-strategies,respectively. 1SD also holds that decisions about curriculum
and instruction can be based on a cognitive classification of the instructional objectives. Specific
recommendations in this regard can be found for curriculum in Reigeluth and Stein (1983) and for
instruction in Merrill (1983). In the automated tutoring literature, many of these recommendations (e.g.,
teach procedures with exercises and examples) are implicit and far from compiete.

A second potential benefit of ISD is the fact that it aims for a comprehensive treatment of
instructional design. Even a casual reader of the literature in automated tutoring would have to be struck
by the narrow, piecemeal nature of the offerings. The chances of finding an intelligent tutor that meets
the needs of a randomly chosen application are quite small indeed. By contrast, ISD offers a top-down
approach that covers a large area of the instructional waterfront. This means, for one thing, that
researchers or designers need not tailor their application to ISD methodology; rather, the methodology will
tailor itself to the application. In addition, ISD can deal with complex combinations of different kinds of
instructional objectives and find the corresponding combination of instructional methods. Most skills
require a combination of declarative and procedural knowledge. Whereas most automated tutors are
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specialized 1o teach one or the other, ISD offers as pan of the design process methods for teaching both
where they are needed.

However, ISD is not without features that make it difficult to apply to intelligent tutoring systems.
One of the most evident of these problems is the fact that ISD is meant to be used by intelligent {
designers, and it takes full advantage of their powers of intellect. Although the prescriptions of ISD are
precise enough to be understood by people (and are often seen as annoying in their precision), they
come nowhere near the specilicity necessary for formalization and programming on a computer.
Designers can fill in many of the details in, say, Merrill's divergence principle, discussed previously); but
the 1ask of writing a single computer program that could apply that principle to concepts as diverse as well-
formed Russian sentences and identifier names in Pascal is well beyond the state of the art.

The state of the art in intelligent tutoring systems is quite different. Well-specified solutions exist,
but only for a small number of problems. Of course, it is possible to create, by hand, additional solutions
by writing programs that apply ISD principles in particular cases; but this strategy will not significantly
advance the task of formalizing those principles themselves. If ISD has any power that is independent of
the intellect of its users, then expressing its principles in formal mechanistic terms is a most appropriate
venture.

Another feature of ISD that limits its current applicability to automated tutors is its lack of emphasis
on tutorial situations. Tutoring, after ail, is an expensive and uncommon instructional method, and for this
reason alone may have failed to capture the attention of the ISD community. Woolf and McDonald’s
(1985) research suggests a paraliel that heips make the shortcomings of ISD apparent in tutorial situations.
Recall that they proposed two levels of tutorial interaction. One, governed by the DMN, corresponds to
the kinds of instructional plans that can be developed using ISD. The other, governed by meta-rules,
allows for globa! evaluation of the instructional context and dynamic modification of the instructional plan.
The principles for effecting the former, planned level of interaction are consistent with the principles of ISD
and in fact are given an extensive treatment in Gagne and Briggs (1979). However, | see no way that the
second more global level of interaction can be accommodated under ISD as it currently stands. Extending
ISD to allow for ongoing global evaluation of the instructional context would make it more applicable to
actomated tutoring and would be a significant advance in 1SD itself.

Besearch suggestions for instructional design. As a first step towards a design approach to
automated tutors, laboratories for the systematic manipulation of alternative tutoring methods are needed.
Meno-tutor and WEST are good examples of these laboratories because they provide a tutorial shell that
can host a variety of instructional methods. Design knowledge can also come from observation. Of
interest in this regard are Wizard-of-Oz systems’, semiautomated tutors in which a human tutor (like the
Wizard of Oz) replaces some or all of the instructional functions of an automated tutor (like the machine
that the Wizard used to project a wizardly presence to visitors). Studies of these systems might range from
systemaltic observations of tutors' case-selection strategies to development of a sophisticated tutor's
assistant, designed to support real tutoring activities as well as collect data on tutors’ behaviors.

Iheories of learning and instruction. Many of the problems that afflict ISD and other approaches
to instruction occur because they lack a foundation in a precise theory of learning. That is, there are no
models of the mechanisms that govern a student's interpretation of particular instructional presentations.
An obvious approach to these problems is to discover laws of learning which will specify these
mechanisms, and in fact much work over the past century has been devoted to the discovery of such laws.
A question posed earlier by Anderson (this volume) again arises. Why are there no automated tutors that
can work with a mode! of a learning student?

71 would like to thank Jim Miller for suggesting this concept and the term Wizard of Oz.
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The answer lies in the complexity of the instructional enterprise, a complexity manifest on several
leveis. The first level is that of cognition. Laws of leaming apply not to overt stimuli and responses but
rather to internal symbolic representations of the type described by Anderson and VanlL.ehn (this volume).
A second level of complexity stems from the communicative nature of the instructional enterprise. Laws of
learning are incomplete descriptions of what goes on in instructional situations. Needed is a joint theory of
how instruction is formulated by the tutor and how it is interpreted by the student; neither aspect makes
sense without the other. Even greater complexity is introduced by the possibility that students do not
already know the instructional conventions when they come to the tutorial, but rather must learn them
during the course of instruction. Do children come to second grade fully prepared to take advantage of
VanLehn's felicity conditions, and if not, what laws govern their learning about these conditions? Does a
tutor based on laws of instruction have to arrange to teach those laws to students? There is also the
possibility that the principles that govern teaching and learning are not immutable but rather are selected,
modified, or generated through negotiation between tutor and student. A tutor who fails in using one
form of communication may change the rules in hopes that another form will succeed.

The abbreviated argument presented here takes us from a simple stimulus-response theory of
leaming to a complex theory of instruction that makes little reference to basic laws of learning. 1do not
mean to suggest that simple laws have no use in instructional design. indeed, Schneider (1985) has
gotten considerable instructional mileage from a few simple stimulus-response principles. | do, however,
want to make clear that there is much 1o the tutoring enterprise that does not follow from simple laws of
leaming and that demands a theory of instruction in its own right. A research program in automated
tutoring must have a special concern for the particular nature of instruction as a cooperative enterprise
involving instructional designer, teacher, and student.

Suggested research on learning and instruction. In summary, the field of automated tutoring

needs an account of the mechanism whereby automated tutors achieve (or fail to achieve) their
effectiveness. Such an account may rest on fundamental laws of learning or it may appeal to complex
theories of communication between tutor and student. Research on this question is therefore needed at
several levels. Theories of human learning and machine models of those theories (notably Anderson,
1983) have provided and will continue to provide singular benefits to the field of automated tutoring.
Observations of natural tutorial interactions, and particularly of procedure tutoring are also needed. In
addition new theoretical stances need to be applied to research and development in tutoring. Mehan's
{1979) analysis of communicative mechanisms in a classroom might well be extended to tutorial situations
in a way that supports the development of automated tutors.

. One of the most

important workmg hypotheses in research on automated tutors is that duagnostlc and instructional
methods can be formulated in a domain-independent fashion and that, conversely, the domain
knowledge (i.e., the expert module) can be formulated without reference to particular instructional
methods. This hypothesis, which | call the modularity hypothesis, suggests that diagnostic and
instructional modules can be used across a broad range of domains. It also suggests the less common
converse, namely, the use of several different instructional methods for the same material; see Crawford
and Hollan (1983) for an example of this kind of experiment.

Because it lies at the foundation of the work on automated tutors, the modularity hypothesis
deserves serious examination in its own right. Parts of the foregoing discussion call this hypothesis
into question. For one thing, it is known that different diagnostic and instructional methods apply to
different kinds of instructional objectives. In view of this, rules of correspondence of the sort detailed in
Merrill (1983) might be used to preserve modularity. These rules allow for the systematic tailoring of
diagnostic and instructional modules 1o different kinds of domains. Conceivably, there couid be a tutor
maker that would use these rules of correspondence to generate an automated tutor for a particular
application.




A more serious retreat from modularity might be needed in the light of the previous discussion of
propaedeutic representations. Recall that these representations are models of the subject matter that are
needed for instruction but not for skilled performance. Since these representations are derived from a
combination of first principles about the domain and the cognitive capacities of students, there is little
hope of generating them from any expert model. Propaedeutic representations are therefore a form of
instructional knowledge that is specific to a particular domain.

Besearch on modularity. A number of research approaches could illuminate our understanding of
the modularity problem. Studies on tutoring shells or tutor generators are certainly appropriate. Such
studies should develop the rules that govern the design of automated tutors and attempt to implement
these rules in programs that generate or configure automated tutors for particular applications. Also
needed are broader studies of propaedeutic representations. NEOMYCIN and Reif and Hellers work
(Heller & Reif, 1984; Reif & Heller, 1982) are the most systematic efforts in this area to date. Needed are
more examples, and particularly needed are instructional studies that examine how these representations
function in learning. The development of techniques that tutors could use to tailor their materials to
particular specifications could also illuminate the structure of the material {0 be taught. Domain-
independent tutors may start with domain-independent methods for generating instructional materials
from the expert module.

Research Pitfalls

Research in intelligent tutoring systems is somewhat like a mine field; so it is fitting to point out a
few of the issues that researchers do not know how to approach but that could easily sink a development
effort.

JTutors that must learn the material. The common working assumption for intelligent tutoring
systems is that the expert model is fully competent in what it is trying to teach or at least possesses much
more competence than the student does. Two common situations for which this assumption holds are
ilustrated in Figure 4.4, panels a and b. Panel a illustrates a blank-slate situation in which the student
knows littie or nothing about the domain, and the tutor knows just about all that there is to know. Panelb
illustrates a situation appropriate for Socratic teaching. The student has little useful knowledge but a good
deal of misconceptual knowledge. The tutor, as in Panel a, is a master of the subject matter.

Panels ¢ and d of Figure 4.4 illustrate two situations that may often occur in real tutoring situations.
Panel ¢ illustrates a peer tutoring situation in which the tutor has only a small advantage over the student.
Communication between tutor and student is dramatically altered in this situation because the tutor must
eifectively convey his or her own shortcomings to the student. Also, both tutor and student in these
situations are often involved in a cooperative learning enterprise in which each grows in competence.
Meeting either one of these demands is well beyond the state of the art at this time, and the combination
is even further from the grasp of current methods.

Panel d of Figure 4.4 presents an even more difficult case, one in which the student Is actually
more competent than the tutor. Automated tutors that can function well in this kind of situation have a
tremendous advantage over those limited to the situations illustrated in Panels a and b because they can
be of use even with a less than complete expert module.

Tutors that must learn to teach. The underlying goal of most research in intelligent tutoring
systems is the successful representation of teaching knowledge and its implementation in & machine.
However, at least two efforts in the field have inquired into the possibility that automated tutors could,
themselves, learn to teach. Both of these efforts missed the mark in my opinion. One tutor (Kimball,
1982) improved its tachnique through successive refinement not of teaching strategies but of its student
model. The other (O'Shea, 1982) used a complex generate-and-test procedure to try out various
commonsensical notions about teaching techniques. Little is known about good teaching and less about
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how it is learned. Our own ignorance aside, it is doubtful that any intelligent system, human or machine,
could leam to teach on the basis of experience alone. Hence, automated tutors that can really improve
their technique on the basis of interactions with students are probably not going to appear in the

foreseeable future.

IR |

~ Truth

Knowledge H[ﬂﬁmﬂ
Tutor Knowledge E

Figure 4.4. Possible Configurations of Student and Tutor Knowledge.

(a——Blank—slate model; b——

Socratic model, c——inexpert tutor, inexpert student, d——inexpert tutor, expert student.)
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Building Automated Tutors with Today's Technology

Finding one's way to a feasible application of automated tutors is a difficult job at best.
Nonetheless, I offer the following guidelines for deciding when and how to implement automated tutors.
The reader should be aware that the shelf life of lists such as these is vanishingly small.

Choosi lcation.

1. Work with a domain that can be formalized. Choose an application that can be formalized, one
for which, in particular where i is feasible to build an expert module, a propaedeutic representation, or
both. Formal problem-solving situations such as troubleshooting or programming are highly suitable. In
domains such as tactical planning, which have a more subjective content, select subtasks that can be
formalized. Domains such as literary criticism or foreign policy analysis are not within the reach of today's
automated tutors.

2. Stay away from natural language. Anderson (this volume) has pointed out that natural
language understanding is the Achilles’ heel of many potential tutors and of expository tutors in particular.
if an application calls for an expository tutor, look for techniques such as those described in Crawford and
Hollan (1983) that do not require natural language understanding.

l ional desi iderations.

3. Use known principles of sound instruction. Although a good many of the principles of ISD are
difficult to automate, many can be used in the design of an automated tutor. At the least, tutors can be
designed to conform to the curricular constraints that make for manageability, coherence, and structural
transparency. In addition, the show-work principie from step theory deserves serious consideration in any
procedure tutor.

4. Use both model-tracing and issue-based tutoring. Both of these instructional techniques are
known 1o work in selected cases. They can be combined in the same system and they will compensate for
each other's failures. Hence the design of an automated tutor, starting with the student and expert
modules, should provide for both of these techniques.

, L desi ideration.

5. Design for modularity and robustness. Implementing automated tutors is a risky business.
They should thersefore be designed to function even if one or more of the parts is ineffective or
inoperable. With respect to curriculum and instruction, for example, the tutor should be designed to
function with a fixed default curriculum, and it should provide a useful instructional environment even if the
tutor is completely silent. The Wizard-of-Oz systems previously mentioned, which use human tutors
instead of machine tutors, may also be a possibility in some cases.

Conclusion

What then is the current state of the task of codifying the principles of effective tutoring? There
are a number of instructional guidelines (e.g.,step theory) that can support the design of automated
tutors, and there are some technological tools (e.g., model tracing) that can be used to build effective
automated tutors for certain appiications.




The existence of these guidelines and the tools for implementing them represent real progress in
the field of intelligent tutoring systems. However, the major issues associated with curriculum and
instruction in intelligent tutoring systems are still unresolved. The design principles needed to specify the
range of automated tutoring applications and the structure of that range do not exist. Precise mechanistic
theories that can account for the effectiveness of particular instructional techniques have not been
formulated. Clear notions of what constitutes an instructional principle and what constitutes an
instructionally useful aspect of some particular domain are also not available.

The very fact that these issues are recognized is a sign of real progress. Fifteen years ago, when
the field was in its infancy, there was little to say about the representation of knowledge for teaching
purposes and even less to say about the instructional process. Until very recently, a representation ot
expert knowledge was deemed sufficient for teaching purposes, and theories of learning in uninstructed
situations were deemed sufficient for describing instructed learning. Awareness of these issues and the
technology for exploring them will make the next few years of research in intelligent tutoring systems at
least as exciting and profitable as the past 15 years.
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DISCUSSION

Curriculum and Instruction in Automated Tutors

Th> discussion on Curriculum and Instruction in Automated Tutors 1is
deferred to page 125. There M. David Merrill discusses both Chapter 4 and
Chapter 5.
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CHAPTERS

THE ENVIRONMENT MODULE OF INTELLIGENT
TUTORING SYSTEMS

Richard R. Burton
Intelligent Systems Laboratory
Xerox Palo Alto Research Center
Palo Alto, California

[. INTRODUCTION TO THE ENVIRONMENT MODULE

This chapter describes the environment part of intelligent tutoring systems (ITS). The term
"environment” is used to refer to that part of the system specifying or supporting the activities that the
student does and the methods available to the student to do those activities. That is, the environment
defines the kind of problem the student is to solve and the tools available for solving it. For example,
in the SOPHIE 1 electronic troubleshooting environment (Brown & Burton, 1975, 1987: Brown,
Burton, & de Kleer, 1982), the activity is finding a fauit in a broken piece of equipment, and the
primary lool available to solve the problem is being able to ask in English for the values of
measurements made on Lthe equipment. The environment part of SOPIIE supports these activities by
providing a circuit simulation, a program to understand a subset of natural language, and the routines
to set up contexts, keep history lists, etc. Our definition of environment includes some aspects of help
that the system provides to the student while he or she is solving problems but does not include those
forms of help that one would classify as requiring intelligence; these will be left to the chapter on
tutoring, curriculum and instruction. This chapter is of necessity brief and selective in its coverage of
instructional environments. Wenger (1987) provides a more detailed overview of many of the systems
mentioned here, and more.

A Pedagogical Philosophy

The combination of highly reactive and individualized dialogues in ITS enabled by research in
cognitive science about the nature of understanding has allowed a revisiting and a revising of
pedagogical philosophy. Some of these ideas are new, some are old. The important point here is that
their realization in aclual educational practice is made more feasible by the combination of technology
and psychology. The following precepts adapted (rom Nickerson (1986) provide a worthwhile
perspective on the view of education that underlies much of the researchk in intelligent instructional
cnvironments.

Constructivism: Learning is the construction of knowledge, not the absorption of it. The
learner is not an empty vessel into which knowledge is poured. The learner must be active and must
be relating new knowledge to existing knowledge.

Importance of conceptual understanding: It is inappropriate to have students learn procedures
by rote. The rationalizations for procedural knowledge must be taught or discovered if students are to
exiend learned procedures to situations heyond those taught. In most cases, students will have to
construct their own rationalization of a collection of procedures just to remember them. (Brown,
Moran, & Williams, 1982)

Preconceptions: Given that lcarning is constructive, the role of preconceptions that even
introductory students bring to a subject is critical. Some of the preconceptions are likely to be wrong.
These misconceptions may nced to be identified and corrected for correct learning to occur.

Connecting in-school and out-of-school learning: A major impediment to learning is the
Tailure to connect classroom learning to experiences in everyday life. A similar problem is the failure
to connect knowledge learned in different subjects. In other words, learning is not integrated. The
structure of the instructional environment must be made real to avoid the schooling phenomenon; that
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is, the tendency of students to learn to solve the problem by using the structure of the instructional
environment rather than the knowledge it is trying to teach. For example, math students quickly
learn that the {irst problem al the end of a chapter is simple and requires only the techniques
presented in that chapter, whercas the last problems often require techniques froin earlier chapters
and have more complex solutions (Schoenfeld, 1985).

Self-monitoring and self-management techniques: Effective learners take responsibility for
managing and monitoring their own thinking and learning activities. Some of the skills they need for
these activities are planning, directing attenlion, assessing comprehension and controlling anxiety.
Instructional environments are increasingly being designed Lo foster the development of meta-skills.

Lifelong learning: Education is not something acquired in school and used throughout life.
Increasingly, job skills are prone to obsolescence. Iducation must be an ongoing process.

Fxamples Of Instructional Environment Tools and Activities

Learning is greatly enhanced by a proper facilitating environment. This section presents
some examples of cffective instructional environments that have been developed by cleverly
formulating problems and constructing tools to solve them. Some of these environments are
considered intelligent; others are not. They are presented here to point out the range of tools and
activities that have been developed.

The Lego Logo environment (Papert, 1986) is a good example of creating tools and aclivities to
produce an effective instructional environment. This environment consists of a collection of Lego
construction plocks, some of which are computer monitored and controlied; motors; switches; and
sensors. An early activily for students is to build soap box racers and to race them to see whose goes
farthest. Students quickly develop ideas about why some go farther than others such as weight,
distribution of weight, aerodynamic shape, elc. Eventually they discover that the most important
thing about making a long-running car is to reduce friction. Of course, they may not know the name of
this principle, but they are very much aware of Lthe concept. Such experiences form a good basis for

later formalization in physics.

Problem selection plays a major role in instructional environments. The !istorian's
microworld (Copeland, 1984) illustrates how clever problem selection greatly enhances an education
activity. This system gives students a chance to discover what a historian does. It is used in a
classroom by several teams of students, each of whom is trying to find the answer o a perplexing
historical situation. For example, paraphrased from Copeland (1984):

FFrom 1565 until 1769, the "Manilla Galleon”, laden with rich cargo, sailed from
Manilla to Acapulco. Prevailing winds forced the ship to sail north, contact the
California coast north of San I‘rancisco, and then sail down the coast to Acapulco.
Because of the greal distance lraveled and the poor weather conditions, this
nine-month voyage was very difficull. For more than 200 years, with passengers and
crew weak or dying from starvation and vitamin defliciency, the gatleons on this route
did not stop but sailed past what is Loday one of the most fertile and inviting coastlines
in the world. Why?

The teams brainstorm about possible causes such as fog, hostile natives, or a rocky coast and
arrive at a hypothesis the group supports. They then gather data to support the hypothesis by asking
the system [or information (it uses keywords Lo analyze their queries) and reject, refine, or expand
their hypothesis. Finally, each team publishes its resulls and compares ils analysis and conclusions to
those of other tcams. All of this pedagogically valuable activity depends crucially on the selection of a
suitably captivating problem.

One power{ul way that an environment can aid learning is by making explicit or manifest a
previously implicit or hidden property of the content. The environment portion of Anderson's
Geometry Tulor (Anderson ct al, 1986: Anderson, Boyle, & Yost, 1985) is a good example of an
environment that brings out tinplicil properties in the Ltask, making it easier to learn. In the standard
way of doing geomelry proofs, a proof is seen as a sequence of statements that starts with premises and
uses thcorems and applicalions of modus ponens to previous statements to build a logical chain from
the premises to the conclusion. This view masks two important properties of geometry proofs. One is
that they are really tre structured, not linear  The other is that they can be developed by working
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both forward from the premises and backward from the conclusion. The representation provided by
the Geomelry Tutor (see ['igure 5.1) brings out both of these properties. Thus, the environment of the
Geometry Tutor, even if it did not contain the tutor, would be a valuable aid to learning. ft is
noteworthy that research into the cognitive nature of the task preceded and guided the design of the

environment (Auderson, 1981).
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The BUGGY game (Brown & Burton, 1978) is another example ol an environment that makes
students aware of hidden processes: in this case, their own thinking. From studying student error
patterns in arithmetic, Brown and Burton developed a computational model that was able to duplicate
students' behavior. The BUGGY game arose from using the computational model to simulate "buggy”
students so that students or student teachers could experience diagnosing realistic erroneous
behavior. The object of the game is to discover a computer-simulated student's bug by giving it
problems to solve. This forces the plavers to consider as an object study the subtraction algorithm that
they have heretofove heen following by rote. To play the game, they must trace through their own
procedure, checking at each step to see whether the simulaled student's answer agrees with theirs
and, when it disagrees, considering what alternatives t+ heir own procedure would cause the observed
behavior. The game introduces the players, who are students or teachers themselves, to the idea of
debugging and gives them a concrete example of thinking about their own thinking.

One theme that repeatedly appears in I'TS is the presentation of processes and information
from multiple perspectives to get students to appreciate the power of different ways of conceptualizing
a problem. The Envisioning Machine in Figure 5.2, a physics world being developed by Roschelle (in
press), provides parallel displays of physical motion. Inone display, students throw objects around and
observe their motion. In the other display, students create and observe motions using force diagrams.
ARK (Smith, 1986) is another environment that allows students to play with the motion of objects
from different perspectives. In ARK, students activate and watch objects that obey different laws of
motion. Thus, for example, students can compare motion in worlds that have gravity with those that
do not.

Using multiple perspective is a powerful pedagogical technique that other systems use as well. The
MANBOARD system (Hutchins & McCandless, 1982) described in the curriculum and instruction
chapter (see Halff, this volume, Figure 4.2) sceks to develop the student’s concept of relative motion by
displaying the paths of ships in both geographic and relative (egocentric) coordinates and by pointing
oul how certain problems become easier to solve in one coordinate system than in the other. Steamer,
which will be discussed later, allows the student to view the operation of a steam plant from external,
internal or mechanistic points of view. Arithmekit (Brown, 1983) provides parallel worlds, one
symbolic and one semantic based on Dienes Blocks, in which arithmetic algorithms can be displayed.
The student constructs a procedure in the symbolic world and watches its execution simultaneously in
both the symbolic and the semantic worlds.

[ssues of Instructional Environments

This section lays out several dimensions along which instructional environments differ.
Examples are given of systems at dilferent positions along the dimensions.

Knowledge: What Is Being Learned?

One important dimension of instructional environments is the question of what is being
taught. Loosely speaking, the knowledge a person has about a domain consists of facts about the
domain, skills or knowledge of procedures in the domain, and concepts that organize the facts and
procedures in the domain. In addition, the person has meta-skills that aid in the learning of new
skills. Different instructional environments focus on teaching different aspects of the knowledge by
changing the activities and lools in the environment. tHowever, most of the intelligent instructional
environments have concentrated on the lcarning of domain-specific skills.

Even in the same domain therc can be many different kinds of activities tcaching different
skills. This can be seen in a number of systems that have all been built around the domain of plane
geometry.

The Geometry Tutor mentioned carlier provides an environment in which students can prove

geomelry theorems. The system monitors their performance and corrects them when they make a
mistake. The skill this system teaches is how to prove geometry theorems that someone else has

provided.
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Figure 5.2. Example of the Envisioning Machine (Roschelle, 1986). The window on
the right, "Observable World", contains a simulation of objects moving in real space.
In this window, the user can grab the ball and drop or throw it and watch its Lrajectory.
The window on the left, "Newtonian World,' contains a force diagrammatic view of
objects in motion. In this window, the user sets vectors that give velocity and
acceleration to point masses. The activity shown here is to duplicate the trajectory of
a thrown ball with velocity and acceleration vectors. Reprinted with permission of

Xerox Corporation, © 1986.

The Geometry Supposer (Schwartz & Yerushalmy, 1986) allows students to construct
geometric figures and perform measurements on them. Importantly, it keeps track of their
constructions and can redo the operations under varying conditions. This facility allows the students
to invent conjectures and see whether they are true for different examples. This system is used to
develop students' skills in forming and te<*:ng hypsotheses, a central activity in the art of mathematics.
It also instills the need for proof as the basis for settling disagrcements about the validity of
conjectures. Note that this instructional environment does not provide the problem. The problem
must come from the teacher, the student himself, or a fellow student. Thus the social environment in
which the Geometry Supposer is used is important to its success.

Papert (1980) developed Turtle Geometry to take advantage of children’s physical experience
in ., ~e lo provide entry into a world in which mathematics is useful. Papert uses the domain of

geometry but in a sense does not care whether students learn geometry per se. By exploring the Turtle
Geometry microworld students develop skills in and an appreciation of the power of mathematical

103




—

thinking. Inan extension of Papert's work, Abelson and diSessa (1980) present a path that uses Turtle
Geometry to explore a particular set of mathematical ideas.

As can be seen from thesc examples, all of which teach different parts of the same subject, it is
important to consider what an instructional environment is trying to teach. It is also important to
idenlify what the student is (or can be) learning. The two may be very different. An anecdote about
the potential for mismatch concerns a student discovered by Erlwanger (1973). The student had taken
several years of a computerized arithmetic curriculum that had been structured into small units.
ISach unit taught a simple subskill, such as how Lo borrow from the next column, and was followed by a
Lest Lo ensure mastery. The eriterion for moving to the next unit was to get 80% right on a test. The
student was one of Lhe better students in the program at the Lime Erlwanger intervicwed him. What
Friwanger discovered was that far from having a coherent notion of the arithmetic operations, the
student knew a large collection of ad hoc rules, cach of which worked on a particular subset of the
problems. Furthermore, the student’s concept of mathematics included a belief that the correct
arithmetic algorithm is something that produces the right answer 80% of the time! The design of an
instructional environment needs to be informed by careful obsecrvations and perhaps in-depth clinical
interviews aboul what is actually being learned. This is one important role for formative evalualions,

as discussed in the chapter on evalualion.

l.evel of Abstraction

Another issuc in the design of the cnvironment is the level of abstraction at which knowledge
is presented, i.e., whal features of the real world to represent and why. This issue can be i'lustrated by
considering a range of instructional environments Lhat could be used to teach steam plant procedures.
Figure 5.3 lays out five cxamples along a level of abstraction dimension. For the purposes of this
cxample, assume Lhal the activity is Lhe same for every environment; such as diagnesing a problem in
the steam plant. Although FAULT and TASK have not been applied to this domain, they could be in a

straightforward way.

real steam plant Steamer FAULT TASK
sleam planl mock-up
> >
leasl mosl
abstract abstract

Figure 5.3. Instructional Environments Vary in the Level of Abstraction with Which
They Represent the Subject Matter.

The most realistic expericnce is Lo train in the actual steam plant. The students’ tools in this
environment are the actual gauges, visual inspection of the pipes, etc. An alternative to incurring the
cxpense and risk of allowing a trainee to experiment with a real steam plant and its attached ship is to
use a mack-up. This is typically a full-sized duplication of the components of the steam plant with the
gauges being driven by a mathematical simulation model rather than by the actual flow of fluid in the
pipes.

Steamer. Steamer (I{ollan, Hutchins, & Weitzman, 1984; Ilollan et al, 1987) provides
graphical display and control of a simulation of a steam plant. The steam plant can be viewed at
different levels of detail, and the processes involved in the functioning of the plant can be seen in
different ways. For example, one of the approximately 100 displays shows, using animation, the flow
of fluid through the plant (sce Figure 5.4.).  Another display shows dials that give the pressure at
various points in the plant. A third display shows a graph of pressurc as it changes through time or
indicates the rate of change (see I'igure 5.5.). The different displays are used to demonstrate different
propertics of the plant's operation. The ow animation may be used to indicate causal connections
between difTerent parts of the plant, whereas processes that depend on the rate of change in pressure
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SIGNAL ICON MINI-LAB

Figure 5.5. A Signal Icon {rom Steamer (lollan, Hutchins, & Weitzman, 1984). The
graph at the top of the figure shows the value of a variable across time. the icons at the
bottom depict the rate of change of that variable. Displays such as this one are used to
make visible some aspects ol automatic control systems that are difficult to see with
traditional gauges. Reprinted with permission of AAAIL ©) 1984,

Fault. The FAULT system (Johnson, 1987) works on a functional representation of the
equipment, a level that does not include any mechanisms across the connections. FFigure 5.6 shows an
cxample of the representation of one device, a car engine. The student gains mlormation in the
troubleshooting task by asking for the status between two components and is told whether the status
is normal or nol. During troubieshooting, the student is charged according to the costs of performing
tests in a real piece of cquipment.

Task. The TASK system, Troubleshooting by the Application of Structural Knowledge, is
actually a precursor to FAULT (Johnson, Maddos, Rouse, & Kiel, 1985; Rouse, 1979: Rouse & Hunt,
1984). It eliminates all dommain knowledge and represents only the information needed to develop
generic troubleshooting skills such as the hall-split method. It views the troubleshooting task at the

-~

level of abstract components connected to other components as sho .nin Figure 5.7, The connection
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between any two components is cither acceplable or unacceptable. The student queries the
connections and looks for the one component that has all acceptable inputs but unacceptable outputs.

R
;’(\E-’) !

/

[ ) |

)

A .
a8 &) 1
e

Figure 5.7. A Diagram of a System as Shown Lo a Student Using TASK. The system
focuses on domain-independent troubleshooting skills; the student is not told what the
numbered components are.

Iidelity of Environments

In the training literature, the concept of how closcly the simulated environment matches the
real world is referred to as fidelity. A high-fidelity simulation is one that is nearly indistinguishable
from the real thing. Researchers havc identified several different kinds of fidelity that serve in
different situations. There are at least four kinds: physical fidelity (feels the same), display fidelity
(looks the same), mechanistic fidelity (bchaves in the same way), and conceptual fidelity (is thought of
as the same). {footnote: For ITS, there is an addilional kind of fidelity, expert fidelity. This
characterizes how the methods used by the student and the computer expert Lo solve the problem
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correspond. A comp:ier expert that corresponds in a usclul way is referred Lo as an articulate expert,
see the chapter on the Expert Module.}

Researchers are beginning to understand that the importance of each kind of fidelity depends
on the conceptual framework of the learner. By studving the dilference between experts and novices
in different dom "ns, cognitive psychologists have discovered that students go through different
canceplual stages in learning a subject (Brown & Burton, 1987, Chi, Feltovich, & Glaser, 1981;
diSessa, 1983; Larkin, 1983; Wiser & Carey, 1983). Related work has shown that students can learn
advanced theories well enough Lo pass tests but still act in the real world in ways that contradict the
theories (Clement, 1983; diSessa, 1982). This finding lends new support to viewing learning not as
the pouring of knowledge into an emply vessel but as a process of reconceplualization, of gettling
students o construct the appropriale knowledge out of the knowledge that they already have. It is
important to take students through a progression and not merely teach them the expert's notion
because it is through this progression that new knowledge connects to students' experience of the real
world. (Sce Brown & Burten, 1987 for further discussion.)

From experiences using TASK and FAULT, Johnson (1987) reports that, for beginning
students, a high level of display fidelity is important. Thal is, the displays in which information is
given must resemble the real equipment: beginning students have ro domain concepts and hence rely
on the appearance of the equipment to organize their knowledge. As the students learn more, this
reliance decreases, and they will use a display with more digested information about the internal state
of the equipment in preference to a color, visually realistic display of Lthu external state. As their
concept of the domain becomes more abstract, they can recognize and work with the more digested
information if it corresponds to their way of breaking down information. For experienced students,
even the abstract view of troubleshooting presented in TASK is valuable because their knowledge has
advanced to this level. Interestingly,this finding implies that more realistic (i.e.,, more physically
accurate) simulations are more important for beginning students and, therefore, the multimillion
dollar steam plant mock-up, or real equipment, ought Lo be used with beginning students who, after
their first experiences, can be moved to much cheaper computer systems. Fortunately, this is not the
case as Johnson (1987) reports that visually accurate simulations seem to be as effective as the reai

equipment for training.

In their attempts to cvaluate human-computer interfaces, [utchins, Hollan, and Norman
(1985) defined the term "semantic distance" Lo be how far the concepls that the system uses are from
the ones the user has. Combining the idea of semantic distance with the movement in conceptual
structures that takes place in development from novice to expert leads to the conclusion that the
environment that is cognitively accurate to the novice will not necessarily be so for Lhe expert and vice
versa. The conception of the domain in the environment may need to change to create intermediate
stages to move the student to a final state.

IF'or example, students just learning to program in LISP look at a function such as

(DEFUN fact (n)
(COND ((= n 0) 1)
(T (* n (fact n-1)}))))

and see text. For them, a text editor is Lthe appropriate lool for changing programs. If they want to add
an additional conditional clause to check wi.ether n is less than zero, they would think of it as
inserting the characters "({ < n 0) 0)" after the string "COND." As they learn to recognize the program
structure that the text represents, they will begin to eonceive of this edit as adding a new conditional
clause; and it is then appropriate for the editor to provide them with commands thal operate on
structure as well. Thus, proper environment, or instructional environment, may change as students'

conceptualization of the domain changes.

Sequences of Environments

I'ischer, Brown, and Burton proposed a framework for learning complex skills that arose from
studving downhill skiing as a successful example of teaching (Burton, Brown, & Fischer, 1984;
I'ischer, Brown,& Burton, 1978). The framework views the student as being exposed to a sequence of
increasingly complex microworlds that provide intermediate experiences such that within each
micrownrld the student can see a challenging bul altainable goal. An important aspect of the
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instruction is the ‘nstructor's choice of the proper microworld. The factors that a ski instructor
manipulates to create different microworlds are the equipment (e.g., the length of the skis), the
physical setting (e.g., the steepness of the slope and the kind of snow), and the task (e.g., do many turns
as opposed to ski fast).

The framework of increasingly complex microworlds has been extended into the domain of
learning computer environments by IYischer and his colleagues at the University of Colorado (Fischer,
in press). They have identified a number of microworlds that the student must learn, such as Lthe
manipulation of multiple windows or the difference betweeid destructive and nondestructive functions.
They are also developing a varicty of tools that provide different kinds of help within and across the
microworlds.

VanlLehn and Brown (1980) developed a formal representation for the structure of tasks and
have used it to model various addition algorithms represented in both symbolic form and base-10
blocks. They were able to evolve a sequence of addition algorithms for base-10 blocks that begins with
an algorithm that simply pushes two groups of blocks together and ends with an algorithm that is
representationally equivalent to the standard symbolic addition algorithm. The sequence is such that
at each step, one more constraint on the way the algorithm can be performed is included. An example
of a constraint is that any final pile of blocks can have al most nine of any size of block. This constraint
is needed to make canonical the representation of a number in blocks and thereby (acilitate
comparison of two numbers. Thus, each transition from one algorithm in the sequence to the next
manifests and motivates one constraint; and the complexity of the final symbolic procedure is justified
by the collection of constraints. This work demonstrates a theorctical basis for choosing a sequence of
microworlds.

White and Frederiksen's (1986a, 1986b) work at Bolt Beranek and Newman, provides another
good example of increasingly complex microworlds. They have developed a system for teaching simple
electronic theory by using microworlds based on a series of qualitative models. They argue that a
student needs to know "zero-order” electronic concepts (those employing no derivatives) and how to
use connectivity to propagate the existence of voltage differences, before they can learn more
complicated concepts. They have identified three levels of coneeptual models so their system has three
corresponding levels of qualitative simulation through which students must progress. At cach level,
the simulation serves as the basis not only for the generation of the circuit behavior but also for the
student model and for the explanations generated by an articulate expert. By knowing a student’s
level, the system can also know on what examples the student's models will fail and hence can push
the student into the next level when he or she has mastered the current one.

Help Provided by the Environment

In addition to providing problem situations and tools, some instructional environments also
provide help to further their instructional purposes. The systems differ in the degree and manner of
help they provide. Each of the following diffcrent ways of offering help is appropriate (or some of the
difficulties students are likely Lo encounter:

1. Help: system has help available upon request or during errors

2. Assistance: system does part of the task, sometimes the whole task.
3. Empowering tools: perform bookkeeping tasks that aid lcarning

4. Reactive: reacts to student's ideas

5. Modeling: system performs the task while the student watches

6. Coach: breaks in and makes suggestions.

7. Tutor: system maintains control over the interaction.

(Tutoring is discussed in the chapter on tutoring and curriculum and will not be discussed further
here.)
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Help Systems. Almost all instructional environments provide some kind of help system. Help
systems are uselul when students recognize that they nced help or when they make an explicit
mistake. Help systems can be complex. The UNIX Consultant (Wilensky, Arens, & Chin, 1984)
provides help by answering the user's questions in English based on a4 knowledge base of UNIX
commands. The MACSYMA Advisor (Genescreth, 1982) builds a plausible plan that explains the
user's actions leading up to an crror, proposes a misconception that might have caused the user to
make the error, and advises the user with a natural language explanation tailored to repair the
misconception. Johnson (1987) found that on-line documentation and operating instructions are an
nuportant kind of help that makes a significant difference in the acceptance of the instructional
environment. The learning-by-doing style of learning that I'I'Ss support applies to the system as well

as the domain.

Assistance. Some systems can lake over parts of the problem-solving task, freeing students to
concentrate on the remaining parts. [n general, such systems ecnable students to see beyond the
details that can overwhelm them during the early stages of learning and to grasp the larger structural
properties of the domain. Properly designed, such an environment can facilitate the development of
sound conceptual understanding and encourage the higher-order thinking skills involved in solving
problems strategically.

In AlgebraLand (Brown, 1985) (sce Figure 5.8) and in the Algebra Tutor (Anderson et al,
1986), students are freed from having to perform manually all the calculations associated with
different algebraic operations. Instead, when solving a probiem, students select operations and
observe as the computer performs them. With the svstem performing the time-consuming mechanical
tasks of symbol manipulation, students are free to see the range of applications for an operation, to
learn to recognize situations in which an operation will be effective, and to understand the limits of its

usc.

[Empowering Tools. Onc¢ important form of assistance an instructional environment can
provide s tools thal encourage students to reflect on their problem-solving activities. Such tools
capture a student's actions and decisions, structure them in an appropriate manner, and allow the
student to browse through them. Algebral.and (IFigure 5 8) provides a good example of empowering
tools. Each decision the student makes is captured and displayed in a tree form that makes explicit
the structure of the search space. Algebral.and also keeps a history of previous solution spaces so that
the student can look back to earlier work. The role played by these tools is to reify the problem-solving
process so Lhat the student is made aware of it and can more easily study it. The two-dimensional
proof tree supported by the Geometry Tutor (Figure 5.1) plays a similar role.

Reactive Learning Environments. Ina reactive learning environment, the system responds to
the student’s actt ns in a manner that extends the student's understanding of his or her action in the
context of the specific situation. This kind of environment is useful for getting students to "break set”
because they are forced to state the ramifications of Lheir beliefs so that the system can challenge
them. SOPHIE I (Brown & Burton, 1975, 1987; Brown, Burton, & de Kleer, 1982) is a good example of
a reactive learning environment. While troubleshooting a simulated piece of equipment, the student
can, at any time, offer a hypothesis about what might be wrong. SOPHIE [ reacts to this request by
evaluating the hypothesis relative to the measurements the student has thus far mnade. That is, the
system tells the student not whether the hypothesis is a correct identification of the fault but whether
it. is logically consistent with the information the student should have learned about the device from
the measurements. Thus, when the hypothesis is inconsistent, the student is confronted with
examples that his or her currenl knowledge does not adequately explain. A key property of reactive
learning environments is to get students to articulate their hypotheses as opposed Lo just acting them
out.

Modeling Systems. A form of help that some systems provide is to model for the student the
way an expert does the activity. [t is iimportant that this model articulate the decisions it is faced with
and the strategics it is using to make those decisions. The "articulate expert” in SOPHIE 11 is a good
example of a modeling system. [t allows the student to insert a fault into the circuit and then
troubleshoots it by making measurements just as the student would. Before each measurement, the
expert explains why it was making that measurcment in terms of various debugging strategies and
based on a qualititative analysis of the circuit. Similarly, after cach measurement, it explains what it
can now conclude. This form of modeling is one important aspect of apprenticeship-style learning
(Collins, Brown, & Newman, in press) which has been used successfully by cognitive science
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researchers (who were not using computers, however) Lo teach reading (Brown & Palincsar, in press),
writing (Scardamalia, Bereiter, & Steinbach, 1984) and calculus (Schoenfeld, 1985) The role played
by the modeling is to make explicit the strategies an expert uses, thereby giving the student an
cxample Lo lollow.
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Figure 5.8. Screen Image of Algebral.and. The window titled "solve for N” shows the
currenl state of the student's work. The window Litled "scarch space window” presents
a visual representation of all Lhe previous problem stales, preserving Lheir temporal
order. In the search space window, duplicate nodes are linked together with gray
lines. The window tilled "basic operations mrenu™ contains Lhe operalions thal the
student can apply Lo the current state.

Coaching Systems. In a coaching syslem, the syslem tracks the student’s aclivities, recognizes
suboptimal behavior, and breaks in o give advice. Two good examples of coaching systems arc WEST
(Burton & Brown, 1982) and WUSOR (Goldstcin, 19823 Stanshield, Carr, & Goldstein, 1976). In hoth
systems, a madel of the student is formed hy comparing the student's behavior with that of an expert.
When the student makces a bad move, Lthe coach interrupts, giving advice designed Lo overcome the
weaknesses observed in the student madel. WUSOR uses an articulate expert, and the advice derives
from a Llrace of the expert. WEST emplavs an exper! that cannol articulale ils reasoning in
psychologically relevant terms. Its advice comes from local knowledge associaled with particular
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weaknesses. WEST demonstrates the idea that even when the system cannot track everything the
student does, il can recognize patterns of suboptimal behavior and provide coaching about the things it
does know. Fischer (1986} has implemented a coach for a practical application, the editor for a
programming language.

The Structure Provided by the Instructional Environment

Instructional environments can be distinguished according to the amount of structure they
impose on the activity. Some systems such as Lego Logo are very unstructured. The environment is
carefully designed to embody a set of ideas and concepts, and students are allowed to explore it.
Unstructured systems are based on the belief that by providing a rich environment, worthwhile
learning will emerge if students are encouraged to explore whatever interests them.

One of the carly goals of ITS research was to make unstructured environments more
productive by augmenting them with intelligent tutors. Thus, the system could help the student see
and appreciate the ideas and concepts the environment had to offer. Unfortunately, the system's
ability to recognize interesting situations occurring in the student's activity is limited by how well the
computer can understand what the student is doing. [f the student is allowed Lo do a wide variety of
things, this problem is more difficult.

Some systems such as Anderson's LISP Tutor (Anderson & Skwarecki, 1986) solve this
problem by imposing structure on what the student is allowed to do. The LISP Tutor walks the
student through the creation of a LISP [unction, correcting the student whenever he or she deviates
from a correct path. [n this way, the system can know what the student is doing at any time and

respond appropriately.

A problem with the structured approach arises when the designer of the ITS has an incomplete
characterization of the knowledge learned from it. Then the systemn may work against the students’
learning those things that have been left oul, and the students may fail to learn everything they need.
ffaving a computerized expert that performs a task does nol guarantee that all of the requisite
knowledge has been identified. Examples of additional kinds of knowledge include self-monitoring
skills that might be necessary in a less structured environment, context recognition skills to
determine when the learned procedure applies and when it does not, and ways of structuring
knowledge that differ from the computerized experts but are more amenable to human consumption.
A good example of the inadequacy of a computer expert's knowledge for teaching can be seen in the
progression from MYCIN to GUIDON to NEOMYCIN (Clancey, 1982, 1986: Richer & Clancey, 1985),
where at each stage, some knowledge was found to he missing. The GUIDON experience is also an
example of a good research methodology: It uses each system Lo improve our knowledge of what needs
to be learned.

Il TOOLS FOR BUILDING INSTRUCTIONAL ENVIRONMENTS

A variety of existing tools makes the creation of instructional environments easier. Different
tools are designed to help different aspects of the problem and examining some of them gives another
perspective on the range of issues that come up in the development of an ITS.

Successful instructional environments have been built in many different programming
languages and run on many different sizes of machines. As we have seen, il is possible %o invent
svstems that require little computation or Lo reimplement existing systems on smaller computers.
However, the bulk of the research on I'TS has been done in exploratory programmming environments
(Sheil, 1983a. 1983b) originally developed for artificial inteiligence work. These programming
environments seek to minimize the time and cffort required to go from an idea to its implementation
and to minimize the difficulty of modifying the implementation as the idea changes. As a result, the
designer is encouraged Lo do formative evaluations, to actually get and use feedback by trying out
carly systems to improve later ones. This seems like an eminently reasonable idea. Currently the best
environments are Interlisp and Zetalisp. Within several years, it is likely that the CommonLisp
community will have developed comparable environments. It can be expected that the transition from
either Interlisp or Zetalisp will not be difficult. It would be premature to trade the ability to make
rapid, large-scale changes that these programming systems provide for the cost savings currently
available through recoding in other languages such as C. During the coming period, it will be critical
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to be able to modify the systems quickly to respond to shortcomings discovered by their being placed in
the field.

Much work is being done in the commercial market for artificial intelligence by companics
such as Intellicorp, Inference Corporation, and Tcknowledge to develop tools to make building expert.
systems easier. Any computing strategy for developing I'TS should be able to incorporate the good
ideas that come out of these efforts.

Tools for Building Educational Simulation Kits

Aside from programming environments, tools have been developed to attack particular areas
within the ITS. One common kind of system is built around a simulator of a certain piece of
equipment. Typically, these environments tcach the procedures to operate, maintain, and
troubleshoot the equipment. The use of simulators in the training communitly has a long history, and
some of the earliest work in intelligent computer-assisted instruction involved augmenting a
simulator with intelligent agents that facilitated exploration by students and tutoring (Brown &

Burton, 1975).

Tools in Steamer

As part of the Steamer project, many tools were constructed to facilitate building complex
graphical interfaces to simulations and using them in educational ways (Hollan et al, 1987). The
Graphics Editor was designed to allow instructors who were knowledgeable aboul the domain but
naive about computers to create graphical interfaces and to customize displays Lo show exactly the
features or mechanism relevant to a particular point. For example, as part of a classroom lecture, an
instructor might put together a display that contained dials {from two separate parts of the plant and
graphs of their pressures to show the relationship between them. The Graphics Editor allows the user
Lo interactively place graphic objects, or icons, from a large predelined library. The icons can then be
tapped into the simulation to display and, in some cases, change the values when the simulation is
running.

The Icon Editor allows a more knowledgeable user to create new icons. The library of icons is
organized in a multiple hierarchical manner using the Zetalisp Flavors system (Wcinreb & Moon,
1981) that allows properties and behaviors to be inherited. This feature makes it very easy lo
customize new icons or combine cxisting icons into new ones. Icons "behave” in the sense that their
display can change in response Lo either a change in the simulation or the passage of time. This latter
capability makes possible the animation that is used to show fluid flowing in pipes or flames (lickering
under heating vessels.

The Steamer group is exploring knowledge-based ecditors to extend the application of the
graphical-simulation technology. One is the Lesson Editor, which provides a means for specifying
instructional sequences that are tied Lo particular behaviors of the simulation. This editor can be used
to present remedial or informative text or other displays when the student's actions cause the stcam
plant to attain certain states.

Another knowledge-based editor is the Behavior Editor, which extends icons to include
activity behavior as well as display behavior in order Lo remove the requirement for the mathematical
model of the domain. Each icon in the library is given code that determines its state based on the
states of the icons to which it is connected. When the icons are placed on the display, their connections
are inferred, and the result is not just a display but also a simulation of the process depicled. This is
similar to the work of Towne's group which will be described next. This approach to building
simulation models definitely restricts the kind of behaviors that are produced because there is no
mechanism to handle simultaneous constraints that are required such as obtaining feedback. FFor
example, this technique would not produce the complete model of the steam plant underlying Steamer.
However, ils exact limits are not known, and it scems clear that much useful instruction can be done
within its boundarics.

The Intelligent Maintenance Training System

Towne's (1987) Intelligent Maintenance Training System (IMTS) is an interactive system for
building graphical simulations for use with a variely of equipment. It performs three major functions:
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L. It provides a simulation of equipment at the functional and front-panel levels and simulates
associated test equipment while a student practices fault diagnosis.

2. It cvaluates the student's diagnostic approaches, assists the student where necessary, and
models preferred diagnostic techniques on problems.

3. It selects appropriate problems for the student to solve and evaluates the students' progress

during troubleshooting practice.

To specify the simulation knowledge base for IMTS, an editor was developed that borrows
many of the graphical and behavior editing ideas in Stcamer. An author can build equipment-specific
simulations by interactively assembling graphical objects that also specify behavior (see Figure 5.9.).
The simulation is determined automatically from the graphical connections between the objects. The
author can also construct new generic objects and specify their behavior with a menu-based interface
that avoids the need to program. IMTS then provides tutorial training functions on the created
cquipment. As mentioned in the discussion of Steamer, the complexity of simulations that can be
constructed using this local technique is limited, but it is unclear how far this level of simulation can
go. The system has been successfully used Lo construct a simulation of the blade-folding mechanism of
the SH-3 helicopter, which is a moderately complex, electrically controlled hydraulic system.

| Display Window

Figure 5.9. A Portion of the Generic Object Library of IMTS. The objects shown here
can be wired together by an editor to create a simulation model of a piece of machinery.

115




The intelligent tutoring components, the automatic expert troubleshooter, the tutor, and the
problem selection specialist all work from information given locally for the components. This includes
information aboul the replacement time, the cost of spares, and mean time between failure. In
addition, the problem selection is driven from a subjective level of difficulty assigned to each
component by the author.

Tools for Building Tulors

PUPS Tutoring Architecture

Anderson's PUPS Tutloring Architecture (PTA) (Anderson & Skwarecki, 1986) is designed to
make it easier to produce tutoring systems that follow the model-tracing methodology discussed in
detail by Van Lehn (this volume). The system strives Lo separale Lthe knowledge about features
specific Lo one domain from the general purpose tutoring apparatus. A domain expert is written in
PUPS, a production rule system that allows flexible control. The trace of the expert running on the
problems the students will get is then produced. The solution Lrace is given to a monitoring program
that can run on a Maclntosh computer and performs the model tracing tutlorial interaction with a
student. Based on PTA, tutors are currently being developed for programming in Ada, LISP, and
PROLOG. PTA provides an interesting example of reducing the cost of deploying intelligent
computer-aided instruction by using intelligence on one computer to produce code that actually
interacts with the student on a smaller computer.

Bite-Sized Tutor

Bonar, Lesgold, and their colleagues at the Learning Research and Development Center
(Bonar, 1985; Bonar, Cunningham, & Schultz, 1986) are working toward the goal of an authoring
language for intelligent tutors. Their approach, called the bite-sized tutor, is organized around the
curriculum to be presented. The knowledge needed by a student is broken into "bite-sized” chunks
that are represented in a formalism specialized Lo Lhe task of tutoring. For example, the formalism
contains links to represent relationships like general-specific or prerequisite and slots for procedures
like modeling the student’s knowledge, tutoring on the content, or assessing blame for errors. The
hope is that by building on an object-oriented system (LOOPS), the bite-sized tutor can accumulate
generally useful routines so that the amount of specialized information neceded for a new domain will
be small. Tutors currently exist for several different domains: subtraction, electronics, and
economics. It is still too early in the research to evaluate how well this approach will generalize.

Tools to Merge ITS with Existing Authoring Techniques

IDE

A group at Xecrox Palo Alto Research Center is working on an authoring aid for the course
development process, called the Instructional Design Environment (IDE) (Russell et al., 1986). One
noteworthy feature of the Xerox environment is that during all stages of the process, the author has
access to a powerful computing environment, NoteCards (Xerox Special Information Systems, 1985).
This environment is built on top of Interlisp-D and includes the ability to link together "cards"”
containing animations, simulations, ICAI activities, video disc, and speech. This {eaturc makes it
easier to design a complele course around an instructional environment.

IDE (see Figure 5.10) provides a collection of tools to aid the design of instructional material.
Some of these tools support knowledge acquisition and structuring, cognitive task analysis, story
boarding and course layout. One tool IDE provides, called the rationale tool, allows the user to
annotate the design of a course, collecting the many decisions, rationales, constraints, principles, and
assumptions that underlie its development. This collection of annotations captures the information
needed by someone who later wants to change something about the course. [t also serves as an
effective communication medium for designers cooperating on the design of a course.

IDE makes it easier to incorporate an activity from an ITS into a complete course. Xcrox is
also working on an experimental course developmment and intelligent delivery system, the IDI
Interpreter, that automates the sequencing of instructional material, thus allowing more flexible and
personalized instruction. Instructors create instruction units that present information or determine
what a student knows and provide rules that represent instructional strategies. During instruction
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delivery, the [DE Interpreler presents students with different sequences of instruction units
determined by Lhe rules of the instruclional strategy and based on a model of their behavior. The
system was modeled after O'Shea's five-ring model for CAl authoring systems (O'Shea, Bornat, Du
Boulay, Eisenstadt, & Page, 1983).

KA/TAA

Perceplronics, Control Data, and Harris have recently started a large contract to produce
knowledge acquisition and intelligent authoring aids (KA/IAA) to support the development and
production of intelligent instructional environments. They propose Lo follow an evolutionary approach
from CAl Lo ICAI and stress the importance of reviewing existing authoring systems and military
courses to determine which are appropriate for I[CAL
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Figure 5.10. Screen Image of the Xerox Instructional Design Environment (IDE)
(Russell, et al., 1986). At thc topof the screen are the course goals. The windows on
the left contain instructional principles. The windows on the right contain the
decisions made in structuring the course. In the middle are "rationales" that link the
course decisions to the goals and principles that support it. The end result of the
design process is a linked collection of descriptions of instructional units. Reprinted
with permission of Xerox Corporation, © 1986.
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I FUTURE TECHNOLOGY AND INSTRUCTIONAL ENVIRONMENTS

There will continue to be major development in both hardware and software. Computation
will continue to get cheaper. The price/performance ratio of personal workstation computers will
halve each year through 1992, independent of advances in parallel processing Read/write optical di-k
technology will arrive, making it possible Lo store massive amounts of information locally. Speech,
input and output, will come along. Graphic chips incorporated into machines will provide rapid color
graphics.

The research cfforts in instructional environments should track these developments and be
ready to exploit them when they arrive. Development systems for artificial intelligence programs will
be improved, driven by market pressures. Similarly, developments will occur in graphics, natural
language processing, and knowledge representation languages. The research strategy for developing
ITS should allow whatever new developments arise to be incorporated as they appear in the
marketplace.

Massively parallel machines such as the Connection Machine promise tremendous increases
in speed for particular applications such as simulations, and questions arise as to what we should do
about this innovation. Qur approach should be based on a view of ourselves as users of the developing
technology for education. We should equip resecarchers with the best available system development
cnvironments that arc cheap enough to permit testing in real classrooms of 10 to 20 students. When
applications of parallel processing are demonstrated, we should incorporate Lthese applications into our
systems. In general, the program for I'TS rescarch and development should focus on problems unique
to ITS.

IV. RESEARCH OPPORTUNITIES IN INSTRUCTIONAL ENVIRONMENTS

New technology and rescarch ideas from cognitive science are opening up many opportunites
for instructional environments. Faster, cheaper computers that have color, sound, video, etc., and that
have access to massive amounts of data through devices such as compact discs open up a wide
spectrum of new environments. One can easily imagine Stecamer-like systems sitting on everyone's
desk and having versions of the Ilistorian's Microworld thal have access to major parts of the original
source material for significant portions of history. [t is important that these new systems are built on
cffective environments; that is, ones thal present relevant problems and provide pedagogically
appropriate tools. As we mentioned earlicr, the environment in many ways defines the way the
student looks at the subject matter. One of the significant contributions of research in intelligent
instructional environments is the cognitive perspective it brings to defining the content of instruction.
We have seen bencfits in the Geometry Tutor environment, in Algebral.and and in Buggy where
developing the system actually helped clarily what needed to be learned. Another good example is the
work of Haertel (1987) which lays out a qualitative model of electricity that will provide an excellent
base for a computerized curricultum on electronics.

Near-Term Opportunities

Listed below are several specific near-term research opportunities in ITS environment rescarch.

Simulation kits are a promising form of instructional environment. Applications for tools like
those that Steamer and IMTS provide should be found, and systems should be developed for them.
Applications will improve these Lools and provide examples of their use. More rescavch is needed on
how to use the tools and the environments they produce. This research is best done in a context in
which many examples exist.

Medium-scale experimental testing of ITS should be planned. The next generation of low-cost,
personal LISP machines will be as fast as current research machines and will make testing more
feasible. Also, the increasing availability of LISP on the 32-bit PCs makes the testing casier.

The incorporation of [TS into standard courses and the use of knowledge based authoring
cnvironments such as [DE should be explored.

Empowering environments that make explicit the process the student has to do should be
developed and their use explored. For example, the process of troubleshooting may have a structure
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analogous to the geometry proof trec or the algebra secarch space tree that could be made explicit to
students thereby improving their troubleshooting skills.

Technological developments such as compact discs, speech, and parallel machines should be
tracked and their potential for ITS application should be determined.

Long Term

The stages of conceptualizations, and common incorrect conceptualizations, that is,
misconcepts, that incoming trainees have should be identified. The role of misconceptions in blocking
learning from instructional environments should be studicd. Instructional environments should be
developed Lo support the transition from incorrect concepts to correct ones. Research must determine
when to do this by confronting the student's misconceptions and when to ignore them and just teach
the student a better concept in a different way.

The other side of understanding the student's conceptualization is to understand the cognitive
ramificalions of changes to the instruclional environment. We need to know more precisely when
different kinds of fidelity are appropriate and when we should use similar environments with slightly
different kinds of fidelity to remedy misconceptions.

We also do not know the extent to which the structure of the environment should impose on
the student's lcarning. What skills are better lcarned with more structured rather than less
structured environments? Which domains? In what situalions, if any, can and should meta-skills be
taught?

In the final analysis, the largest contributlion of research into intelligent instructional
environments may arise from redefining what skills we teach. Recent research (Orr, 1986) watching
technicians at work indicates that an important part of building individual and community knowledge
among copier repair technicians involves structured narratives about the machine's operation.
Basically, what technicians do to organize and communicate their understanding of machines is to tell
stories. Yel nowhere in any curriculum is the student taught about stories, how to tell them, or how to
understand them. Similarly, collaboration, working productively together with others, is an
important part of many tasks but not included in most curricula. Research in instructional
environments nceds to include ways of representing and teaching not only the intellectual skills but
also the social skills students will need on the job.
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DISCUSSION

Curriculum and Instruction in Automated Tutors
and
The Environment Module of Intelligent Tutoring Systems I

M. David Merrill
Professor of Educational Psychology and Technology
University of Southern California
Los Angeles, California

I have a few anecdotes, some criticism, and then I will get into the synthesis.
Anccdotes

First I would like to ask a question. If expcrtise in this field takes thousands
of hours and more than 10 years to acquire, how come so many ITS experts are so
young? Most of you received your degrees less than ten years ago!

Several years ago at an AERA session, I hcard Alan Lesgold, Elliot Soloway,
and othcrs speaking about CAI and ICAL There was no discussant. I volunteered. I
said, "Most intelligent tutoring systems remind me of many college professors. They
arc brilliant scholars but terrible instructors.” The participants got a little nervous.
Then I said, "If I were paid $2000 per day-which I am not-and if ICAI systcms
worked—-which they do not (yet)-and if a client asked me to recommend frame-bascd
CAI or ICAL I would recommend frame-based CAI instead of ICAIL" At which
point, Elliott Soloway jumped on the tablc and said, "There are a lot of you little old
ladies in tennis shoes that don’t understand computers! You've got to get into the 20th
century. Computers are here to stay.” Elliott and I had not yet mct. My reply was,
"Elliot, when you were in kindergarten, I wrote my first computer program.”

Criticism

Somebody asked, "Is instructional design dead?”" My response is, "Are you kid-
ding?” There is a whole new breed of instructional designers. They grew up at MIT,
Carnegic-Mellon, Yale or Stanford. They speak with a ‘lisp’ and they call themselves
knowledge engineers. These new instructional designers are reinventing instructional
design. As an old-school instructional designer, it’s appropriate that I make a few
comments about the new instructional designers. My criticism will be constructive; I
would like to participate in the very cxciting developments in intelligent tutoring
systems. I suggest a couplc of cautions.

Caution number one: If you are going to be credible in the educational com-
munity, you need to bc more careful about extremc straw-man characterizations. For
example, Henry Halff wrotc in his paper, "Nondynamic situations arc like classrooms
whcre both curriculum and instruction can be developed prior to delivery.." Have you
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ever been in a second-grade classroom? Talk about dynamic interactive! These are
very interactive environments.

Richard Burton wrote about the new pedagogy. I was going to jump on the
word new but I noticed in his talk he did not use the word new. These arc not new
pedagogical idcas. They date back to Dewey and beforc. We must be carcful if we
think the pedagogy of intclligent tutoring systems is a ncw approach to instruction.

Caution number two: Many of the argumcnts for intelligent tutoring systems
are based on untested assumptions that are oftcn stated as axioms. The description of
intclligent tutoring systecms often includes a number of unqualified assumptions about
instruction that may not be supported eithcer by theoiy or empiricism. John Andcrson
said, "We need an expert systcm in ordcr to have an intclligent tutor” The qucstion is:
Do we have any evidence that expertisc of the type that he was describing today is
nccessary for effective instruction to go on? [ don’t know of any evidence that really
suggests that an expert tutor in the subject matter arca is nccessary for cffective
instruction. Therc are many teachers who teach studcnts who are smarter than they
are, and the studcnts learn more than the teacher knows, and yet the teachers are very
cffective. How come? We will surcly learn much about knowledge rcprescntation
from building cxpert tutors, but arc they really nccessary for cffective instruction to
occur?

Kurt VanLehn raised the question, Do we need a student modcl? Weak
student models concerning student performance and activities have been used for a
long time in adaptive instruction. One would argue that such models are an esscntial
part of adaptive instruction. However, a strong student model, one which modcls the
student’s learning and enables the computer to act like a student, may not bc necessary
to effective instruction. Like expert models, they may enable us to learn a great deal
about learning and human information processing, but they may not be nccessary for
effective instruction.

The assumptions that an expert model and a student model are neccssary for
an intelligent tutoring system are assumptions, not axioms. They need to be tcsted and
demonstrated to determinec whether thcir presence does indeed enable more cffective
instruction. Intclligent tutoring systems that depend on expert tutors and strong
student models may not be able to dcmonstrate morc effective learning preciscly
because the assumptions on which these systems arc built cannot be supportcd.

I enjoyed Henry Halff's presentation because he tried to relatc intelligent
tutoring systems to instructional design theory. We nced more efforts to relate these
two bodies of literaturc. He raised some very important issues. He correctly indicated
that propaedeutic knowiedge, that information we must learn in order to lcarn
something else, may be lost in our emphasis on expertise. Experts have already
eliminated from their repertoire that propaedeutic knowledge that they uscd to get
where they are. Hence, a model of the expert does not contain all the knowledge
necessary to train the student in that expertise.

Dr. Halff’s description of STEP theory suggested the work of Joseph Scandura
(Scandura, 1983) on rule learning or the work of Lev Landa (Landa, 1983) on algorith-
mic learning. I also was reminded of Don Norman’s (Lindsay & Norman, 1977) web
theory and David Ausubel’s (1968) subsumptive learning. Both of these instructional
design theories make an exccllent argument for tying lcarning back to what students
already know and carefully building on what is known. All of these instructional
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design theories contain prescriptions that could form a foundation on which the morc
technical rules necessary for Al application could be based.

The work on elaborative microworlds described by Richard Burton reminds
mc of the work of Charles Reigeluth (Reigeluth & Stcin, 1983) on claboration theory.
There arc even some idcas, that somc may fecl are dcad but that still seem very
rclevant. One of my favoritc authors is Suc Markle who wrote Good Frames and Bad
(1969). This book contains excellent suggestions about screen design and about
prompting techniques. Shc and Phil Tiecmann (Markle & Tiemann, 1969) put forth a
whole technology of prompting and lcarning guidance. Many of thcir ideas arc
specific enough to be easily translated into production rules. Our own work (Merrill
& Tennyson, 1977, Merrill, 1983) scems rclevant here as well.

I am also amused whcn ITS cnthusiasts talk about CAI and characterize it as
archaic, frame-based page turning. Let mc describe a system that I helped design in
the carly 1970s (Merrill, 1980). This systcm has a mixed initiative dialog, which allows stu-
dents to ask questions of the system such as: Would you pleasc show me a definition?
Would you plcase show mc an examplc? Could you help me with this problem?
Could you advise mc of what to do next? The systcm does not understand natural
language. The student communicates his or her questions via lcarner command
language buttons. There are at lcast 15 different questions a student can ask at any
time. Does this sound an awful lot like an intclligent tutor?

This system also has an advisor (coach), which looks over the student’s
shoulder and watches what he or she is doing. At times the advisor intervenes and
provides guidance to the student about what to do next. The advisor works by
comparing student activity to an overlay model of optimal instructional performance.
This advisor is an expert systcm in lcarncr-controlled learning and coaches the student
to cffcctively use the learncr command language. Does this sound a little like
intclligent tutoring?

Pcrhaps there is more to so-called conventional CAI than mere page turning.
Perhaps some systems descrve a closer look. Maybe they are not so unintelligent as
once supposed. Could there be some principles of adaptive instruction that have been
overlooked by the new designers of intelligent CAI?

Why have the designers of intelligent tutoring systems overlooked the instructional
design literature? I think there are two reasons. Perhaps the first is that ITS researchers
wanted to develop their ideas without being biased by what had been done previously. 1
teach a class in instructional research. The first assignment is: "Write a research review
paper. Write it in the next two weeks. Don’t go to the library. Don’t look at the literature.
Just dump it out.” In graduate school we often teach students that the first thing you do is go
to the library and read everything you can find. Every student comes to graduate school with
some idea that he or she thought was important. My goal is for the students to express this
idea, develop it, and then after they've done that, go to the literature and see if anybody else
has thought about it and what they might have said about it. Write first, go to the literature
second. Perhaps that is what has been happening in ITS. There are a lot of bright people
with a lot of really creative ideas. Perhaps they have deliberately avoided going to the
literature because they wanted to get down the road and get some of these ideas thought
through. However, now is the time to go to the literature. There are others who have
thought about these same ideas.

127




Perhaps there is a second reason why the educational literature is scldom cited.
Henry Halff suggested this rcason. Beverly Woolf, at a previous conference, said to
me, "All right, I'm ready. You give mc the list of things to recad” I had thc samc
sensation that I have when I take my wife to a questionable movie that I thought was
pretty good. Suddenly, I hear profanity that I hadn’t heard the first time I saw the
film. This causcs my wife to look at me as if to say,"Why did you bring mec to this
movie?” 1 had a similar sensation when I was talking to Beverly. Each timc |
rccommended a source, I thought to mysclf, this is rcally vague stuff. When Beverly
starts to read this, she is going to say, "Why did Merrill reccommend this? It’s pretty
hard to translate this stuff into production rules” Too much of the literaturc in thc
instructional world is very vague. It was written for designers, and Hcnry Halff
kindly said that that is the level that designers wanted, but it’s vague for them, too.
This literature nccds to be translated into more precise terms. There is nced for an
intervening science. Bob Glaser, some years ago, suggested an intervening science
between psychology and education. Now we need an intervening science betw:cn
instructional design and computcr science. Both instructional scicnce and compuater
science necd to share the responsibility to provide this intervening science. Can we
state instructional theory in the form of production rules? But let us not start from
scratch and assumc that therc is a whole ncw pedagogy. Lect us work together and
build on what is alrcady known.

Synthesis: Multiple Experts

I would prcface the following remarks by suggesting that 1 am very
uncomfortable with the word tutoring. Intelligent tutoring systems would be better
referenced by the term intelligent instructional systems. The word tutor is much narrower
than we intend. Much of what Richard Burton discussed is not tutoring at all. It’s
creating very active instructional environments that may or may not involve tutoring.
Further, tutoring is only a small subsct of direct instruction.

What characterizes tutoring? Many ITS systems are firmly rooted in the
philosophy of Socratic tutorials. The goal seems to be to duplicate Mark Hopkins on
the other end of the log. I think that both Socrates and Mark Hopkins are highly
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Figure 5.11. The Tutorial Model of Instruction.
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overrated. While tutoring has its place, it may not be the ideal instructional model. Figure
5.11 illustrates the tutorial model as it is envisioned by the Socratic method and as it is
implemented by many ITS systems. Figures 5.12 and 5.13 illustrate alternative, broader, and
potentially richer modes of instructional interaction. In the tutorial mode, the computer
program selects information from the subject-matter content and presents it to the student
via text-graphic frames or helps the student to see the relationships in the content via
question frames (inquiry teaching) or tests the student’s understanding via question frames.
In a mixed initiative dialog the student is able to direct the sequence of these presentations to
some extent, but the critical variable is still the extraction of parts of the content and
embedding these content fragments in prescntations or questions for the student.

EXPERIENTIAL | <— -«
CONTENT ( Explore )
» >

Figure 5.12. The Expecriential Model of Instruction.
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Figurc 513. Transaction Varictics for an Expericntial Model.

Ironically, this same characteristic of tutorial instruction is shared by tutorial
CAIl The difference is in the adaptability of the system to the student’s input. Many
have tricd to characterizec CAI and ICAI as a dichotomy, but in reality they represcnt
a continuum with adaptability being the primary dimension.
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Richard Burton described the computcr as an experiential environment. The
computer can bc not only the tutor but also thc subject matter. Almost any
phenomena can be simulated and the student can be given control over this simulation
to explore, expcriment, predict and intcract with the subject matter itsclf. TFigure 512
illustrates the cxpericntial model where the student is put in dircct contact with the
subjcct mattcr as simulated by the computer.

The most common form of transaction with such an cxpcriential environment
is to allow the student to explore and discover the rclationships involved. Often such
cxploration is thc only transaction provided. Howcver, cxploration is only onc type of
transaction. Figurc 513 illustratcs an cxpcriential modcl of instruction that includcs a
varicty of transactions. Whilc exploration is appropriatc in somc situations, it is oftcn
not sufficient to cnablc the student to Icarn the nccessary procedures or to understand
all of the relationships included in the cxpcricntial simulation.  Figurc 5.13 indicatcs
that if thec cxpcricntial represcntation involves a process, that other possiblc
transactions may include demonstration, cxplanation, prediction and error detection.

However, in thc experimental mode of instruction, the student is frced from
the yoke of Socratic dialog and frcc to explore an cnvironment dircctly. Unguided
discovery can be augmented with a computer coach or advisor to watch over the
student’s shoulder while she or he explores an cnvironment, performs cxperiments,
designs apparatus, or solves problems. When the studcnt is in trouble, the computer
can intcrvene to help the student with the problem, provide missing information, or
guide the student down a diffcrent path. In Figure 514 an advisor function has bcen
addcd to the expcriential modcl. With multiple transactions included, the advisor may
also scrve to sclect or suggest what transaction should bc uscd next and when it is
advantagcous to change to a ncw typc of transaction.
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Figurc 514. An Expcriential Modcl with an Advisor.
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Figure 515 combincs thc tutorial model and the experiential model. A student
model and expert modcl have been added to indicate a complete intclligent
instructional system. Figurc 5.5 also adds as a tool a knowlcdge cxpander of the typc
described by Richard Burton.
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Figurc 515 Combincd Tutorial/cxpcricntial Modcls of Instruction.

To scc the computer merely as a tutor is to limit our vicw. The computer can
be many things simultancously, and the most cffective instruction is that which
cnables the student to intcract dircctly with the subject matter (simulated by the
computer), watch an cxpert perform a task (simulatcd by thc computcer), cngage in a
Socratic dialog about his or her cxploration with the subject matter, or rcccive
coaching as hc or shc attempts to perform somc complex cognitive task. To limit the
students intcraction with thc computer to only onc or somec subsct of thesc
possibilitics fails to takc advantage of the tremendous flexibility of this tool.

Using Figure 5.15, I would likc to makc some distinctions that I think all of us
understand but that arc not always madc specific in descriptions of intelligent instruc-
tional systcms. An intclligent instructional systcm can includc scveral different kinds
of cxpert systcms. Expcricntial cnvironments arc onc form of expertise. A second
kind of expert, labeled expert in Figurc 515, the type that John Andcrson described, is
an cxpert that knows how to manipulatc the expericntial environment in an optimal
way. There is a real distinction between an cxpericntial environment and the skill to
manipulatc that cnvironment. Richard Burton dcescribed a third kind of expertisc,
labcled expert tools in Figurc 5.15. These arc expert systcms or knowlcdge cxtendcers
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with which to manipulate the environment. The advisor represents a fourth cxpert
system, an expert about instructional stratcgy, scquence and learner guidance. Each of
these experts is quite distinct. We nced to be clear about which of thesc we are
talking about.

In addition to different kinds of cxperts, there are diffcrent kinds of content
representations or knowledge structurcs. The knowledge for tutoring is very different
from thc knowlcdge representation for cxpericntial cnvironments.

Synthesis: Instructional Theory

I would like to try to present a brief instructional model that indicates the
kinds of questions we need to answer in order to formulate instructional theory. The
assumption is that there are great instructional principles that apply regardless of
subject-matter content. Consider Figure 5.16.

Instruction is a goal-driven enterprise. The first decision for an instructional
designer is: What are the goals? In some of today’s presentations a distinction was
made between declarative and procedural knowledge. Bloom (1956) characterized
educational objectives in terms of categorics. Bob Gagne wrote four editions of The
Conditions of Learning (1965 - 1984), which describe categories of learning. Most of us
accept the assumption that there arc diffcrent kinds of learning outcomes and that the
conditions necessary to tcach one outcomc may be different from the conditions
necessary to teach a different outcome. The underlying axiom of instructional thcory
is that what you do instructionally is different dcpending on the desired goal or
outcome of instruction.

The second instructional design decision is the selection of appropriate content
or knowledge representations. If wec want to accomplish one kind of educational
outcome, there is a content representation appropriatc for that outcome. Not all
knowledge representations are appropriate for all outcomes. There is a
correspondence between goals and contcnt representation. For example, some goals
require tutorial rcpresentations whilec others requirc cxperiential represcntations.
There is a potential set of rules, labcicd A in Figurc 516, that states: IF <goal A>
THEN <content representation A™>.

A third instructional design decision is the selection of appropriate
transactions. Just as different outcomes require different content reprcscntations,
different transactions are most appropriate for promoting an outcome when used in
conjunction with a given content represcntation. There is a set of rules, labeled B in
Figure 516, which states: IF <goal A> AND <content representation A™> THEN
<transactions Al, A2, A3>.

A fourth instructional design dccision is contcnt organization. A given course
could consist of a number of diffcrent content representations, each with associated
transactions. How are thesc instructional components best organized? There is a
third set of consistency rules, labeled C in Figure 516, which states: IF <goal A>
AND <content representation A™> THEN <content organization A™>.

The consistency rules are design rulcs that can be made prior to course deliv-

cry. There are also instructional design decisions concerning intervention rules that
are executed as a coursc is dclivered. Thesc arc advisor dccisions. There are four
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categories of advisor rules. First are guidance rules. Guidance rules are often subject
matter specific. There are also some general rules that would state: 1F <transaction
A> THEN <guidance A™>. These guidance rules provide two kinds of dccisions: How
to guide and when to guide.

A second category of advisor rules are labeled strategy in Figure 516. Given
two or more transactions associated with a given content representation, the decision
is: When should thc student shift to a ncw transaction? And which transaction
should be next?

A third category of advisor rules arc labeled sequence in Figure 516. If the
content organization consists of a network of content representations, cach with
associated transactions, then the dccision is: When should the student move to the
next content representation? And which content representation component should be
next?

Finally, there is a set of meta advisor rules. Who makes the strategy or
sequence decisions, the system or the student? Under what conditions?

The rules nced not wait for the distant future. In my opinion, it is possiblc at
this point in time to develop instructional theory that would give us considerable
guidance in creating more intelligent, intelligent instructional systems. We don’t have
all of these design rules, but many are suggested by the existing literature. A clear
specification of instructional design rules such as those described could result in a
much more systematic approach to the dcvelopment of intelligent instructional
systems.
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CHAPTER 6

THE ROLE OF HUMAN-COMPUTER INTERACTION
IN INTELLIGENT TUTORING SYSTEMS

James R. Miller
Team Leader, Intelligent User Assistance Project
Microelectronics and Computer Technology Corporation

I. INTRODUCTION

The study of human-computer interaction is especially germane to research on intelligent
tutoring systems (ITSs). The interaction between students and ITSs is inherently complex because the
users of these systems are by definition working with concepts they do not understand well. If the
interface to the ITS is confusing or poorly designed, the effectiveness of the entire instructional session
will suffer. Conversely, a well-designed interface can enhance the capabilities of an ITS in many ways.
Being able to specify the interface to an ITS means that the designer has considerable power over the
way in which the student will conceptualize the problem domain, and over the vocabulary the student
will use to talk about the domain. This is of course a two-edged sword -- it means that for ITSs to be
effective, the designer must be aware of the ITS’s interface and must treat its design as a fundamental
part of the design of the system.

Human interface techniques affect two aspects of ITSs. First, they determine how students
interact with the ITS. A well-designed human interface allows the ITS to present instruction and
feedback to students in a clear and direct way. Similarly, it can provide students with a set of expressive
techniques for stating problems and hypotheses to the ITS. Second, they determine how students
interact with the domain. Many ITSs allow students to work in the domain that is being tutored,
through either a simulation of the domain or direct connection to the domain itself. This interaction is
generally tied closely to the tutorial component of the system so that actions in the domain are analyzed
and acted upon (c.g., Brown, Burton, & deKleer, 1982; Hollan, Hutchins, & Weitzman, 1984; Reiser,
Anderson, & Farrell, 1985). For example, students might write computer programs, solve geometry
problems, work with computer systems, or repair simulated electronic or mechanical devices, with an ITS
monitoring the students’ use of the system. A good interface should ease this interaction: it should be
easy to carry out actions in the domain and to see and understand the results and implications of those
actions. There are of course different ways in which a domain can be characterized by an interface, and,
as was noted earlicr, this is where the real power of a well-designed tutorial interface lies: in defining the
way that students think about the concepts in which they are being tutored.

It is easy to talk about what constitutes a good human-computer interface but much harder to
build one. The key lies in how we think about human-computer interaction, because this
conceptualization will affect how we go about making it good. In fact, interaction is perhaps a poor
tertn to use for this process because it connotes a rather mechanical exchange of actions.
Communicalion is better; it emphasizes the exchange not of actions, but of concepts. By thinking in
terms of communication, an inherently semantic process, it becomes evident that interfaces should reflect
the semantic nature of this interaction. Good interfaces embody an understanding of and appreciation
for the goals and concepts that are important to users and to the domain being tutored; bad ones do not.
As a result, it is very difficult to talk about a good or a bad interface without considering the users’
cognitive capabilities and limitations, and the domain to which the interface serves as a portal. An
important part of this discussion will then be to describe how a user’s interaction with an ITS is affected
by these essential yet cxternal parts of the overall human-computer communication problem. Many of
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the examples in this paper will be of interfaces that address issues other than ITSs. However, the
important issue is not the application area of the interface, but the definition of the ways in which good
interfaces can support people as they gradually acquire an understanding of a complex semantic domain.
This support task is the whole purpose of ITSs, and, as will be shown, it is also central to the more
general questions underlying human interface research.

II. HUMAN-COMPUTER INTERACTION:
THE STATE OF THE ART

The importance of the application domain and of users’ past experiences on the quality of
interfaces means that the critical problems in interface construction lie in the design of these systems.
The following three questions raise other important points about interface design, and particularly about
the suitability of an interface for a particular task and user community.

What Conceptual Model Is Offered of the Underlying System?

All users come to an interface with knowledge that can guide their use of that interface:
knowledge about their past use of computer systems, about the kinds of real-world objects that might be
manipulated by the application program, and about the kinds of real-world objects that might be
portrayed and manipulated as part of the interface. It is clear that this knowledge plays an important
role in human-computer interaction and that people combine this knowledge with their observation of
the structure and behavior of the interface to construct a conceptual model of the system (Gentner &
Stevens, 1983). The value of conceptual models is that they can be used to guide users’ interactions with
systems: they allow users to make reasonable guesses about likely ways to handle novel problems, about
probable reasons for errors, and about good ways to recover from errors.

A good conceptual model of an interface has several characteristics. First, it should offer the
user clarity. The important concepts, distinctions, and relations in the domain that are under the
control of the interface should be clearly and accurately captured by the model. Second, it should offer
the user a high degree of coverage: it should explain as many aspects of the interface and domain as
possible. Third, it should offer them a sound level of abstraction of the system. The model should be
specific enough to allow the user to make strong, correct inferences about the interface and the domain,
but general enough that the user can accept -- or even look for -- differences between a literal
interpretation of the model and the application domain.

These properties can interact. Simple models can be powerful and clear, but their coverage can
be limited and may characterize the domain at an inappropriate level of abstraction. Users who take too
literally the analogy that "a word processor is like a typewriter® have no reason to think that such a
system would let them cut and paste text, search for and replace strings, or justify paragraphs, and they
may never think to search the system for evidence of these capabilities (cf. Douglas & Moran, 1983;
Halasz & Moran, 1983; Lewis & Mack, 1981).

Constructing a good conceptual model for a system is not easy, but is very important. If a good
model is not provided for the users, they are almost certsin to build their own, and it will almost
certainly be flawed. Unlfortunately, picking and building a good conceptual model for a particular
domain is difficult. Most domains can be described by alternate models (e.g., the “flowing water"™ vs.
*teeming crowds® models of electricity [Gentner & Gentner, 1983]), and these different models can lead
users to make very different kinds of predictions about the domain. Insuring the quality of the
conceptual model around which an interface is built is an important part of the design of that interface,
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and good tools to support the incremental development and evaluation of model-based interfaces are
badly nceded.

How Does the Interface Handle the External-Internal Task Mapping
Problem?

Users come to a computer system with a set of task-level goals that they want to achieve, such as
to "archive all the Scribe manuscript files I created last month." Unfortunately, there is a considerable
distance between this goal statement and the actions that most interfaces make available to users.
Spanning this gap -- solving the external-internal task mapping problem (Moran, 1983) — poses a major
design problem for interface construction and a major intcraction problem for users. The greater the
gap, vhe more dufficult the interface will be to use.

This gap can be minimized by building the interface so that the actions supported by the
interface map directly to corresponding actions in the domain. In principle, if users understand the
domain, the use of the interface is trivial. There are problems here, though. The resulting interface may
be good for its intended domain but useless for others. Other interfaces must be constructed separately
for these domains, at considerable time and expense. If the interface is too specialized, users cannot do
anything other than what the interface designer thought of during the design process. Finally, the
conceptual models that underlie specialized interfaces are critical to their success, which means that the
difficulties in identifying appropriate models are especially critical.

Despite these problems, the trend toward building high-level, specialized interfaces for specific
domains is becoming predominant. The task-mapping problem is too great to ignore, and the increasing
availability of graphic interfaces and powertul tools for interface development is reducing the effort
required to implement a well-designed, specialized interface. Simultaneously, the conceptual model
problem is diminishing as more knowledge about these models accumulates and as interface development
tools allow alternative models to be implemented and experimented with.

What Is the General Style of the Interface?

Laurel’s (1986) analysis of interfaces is a good place to start in search of a way to classily
systems on the basis of their overall structure and orientation to the user. This analysis divides
interfaces into two groups, based on the perceived relationship between the user and the domain
addressed by the computer system. In one group, the interface allows users to become direct participants
in the domain. In the other, users control the domain by instructing an intermediary to carry out
actions in the domain.

First-Person Interfaces

In first-person or direct manipulation interfaces, the user has a feeling of working directly with
the domain. These interfaces almost always make strong use of graphics, allowing users to carry out
desired computations by manipulating graphic objects. These interfaces are designed so that the actions
and objects relevant to the task and domain at hand map directly to actions and objects in the interface.
In this way, designers of first-person interfaces hope to avoid the task-mapping problem altogether, or at
least minimize it.

First-person interface techniques came to prominence in the iconic interfaces of the Xerox Star
and the Apple Macintosh. The basic hardware configuration of these systems has not changed very much
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from the days of the Xerox Alto (Thacker, McCreight, Lampson, Sproull, & Boggs, 1979), the forerunner
of this technology. A single-user workstation drives a large bit-mapped display of about 1000 by 1000
points and includes some sort of pointing device with which users can refer directly to objects drawn
from collections of these points. The mouse has become the pointing device most commonly used with
these systems, although joysticks and trackballs have been tried in other systems and applications, with
varying degrees of success.

In these systems, small pictures, or icons, represent programs and data files on the screen (Figure
6.1). These icons can be selected and activated with the system’'s mouse, which starts the execution of
the desired program (Smith, Irby, Kimball, Verplank, & Harslem, 1982). Notice that the user need not
remember the name of the document to be accessed -- il is present on the screen as part of the icon.
Further, links arc generally est~blished between text files {document icons) and the programs that
created them (program icons). Users need not remember what program is used to edit a document or
how to access that editor -- this information is an intrinsic part of the data structures underlying the
icon and is accessed automatically by the system.
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Figure 6.1. A Typical Use of Windows and Icons on the Apple Macintosh.

Steamer (Hollan, Hutchins, & Weitzman, 1984) is a training system that emphasizes first-person
interface techniques. Steamer’s graphic display allows students to view a simulation model of a Naval
steam power plant in ways that emphasize different structural relations among the components of the
steam plant. Steam and water tanks are shown interconnected by pipes, with different kinds of gauges
and valves displaying and offering control over certain aspects of the plant (Figure 6.2). Many of these
devices can be directly manipulated by the student; valves can be closed by clicking the system’s mouse
on them rather than by issuing a command like CLOSE VALVE-17X. Similarly, when gauges display
values associated with parts of the system under the student’s control, such as the temperature of a
boiler, the student can reset the value by clicking the mouse on the needle of the gauge, and moving the
needle to the desired value. The corresponding variable in the simulation model is then given that value,
and the model is updated to reflect the modification.
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IFigure 6.2. Steamer’s Depiction of a Steam Plant. {Hollan, Hutchins,
and Weitzman, 1984). Reprinted with permission of AAAL Q) 1984.

Other projects have used first-person techniques to facilitate procedural tasks such as data
manipulation. Miller and Blumenthal (1985; Figure 6.3) and Hutchins, Iollan, and Norman (1986) have
independently pursued this problem, with rather similar results: icons represent data structures and
procedures, and {inks between these objccts specify how the procedures are to be applied to the data
structurea. The overall intent is the same as in Steamer: to use graphic techniques to concretize data and
procedures, and to make the procedural relations between data and procedures explicit.

The graphical properties of icons have evoked responses ranging from excitement to antagonism.
Some people find the depiction of a document. as a little picce of paper to be a convenient memory aid;
others find it insulting. However, the graphical representation of icons is ultimately beside the point.
What is valuable about iconic systems is the directness of the user’s interaction with the system. The
objects available to the user are visible on the screen, and when users interact with these objects, they
receive immediate feedback about their actions. When a Macintosh icon is clicked upon, it expands into
a window containing the appropriate application program; when an icon is deleted, by picking the icon
up with the mouse and moving it to the system’s "garbage can® icon (Figure 6.(), it immediately
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disappears from the scrcen. It is this immediacy and the visibility of the user’s actions and the results of
these actions that are important, not the details of the graphic presentation.

Although the properties of first-person interfaces appear to offer significant advantages to users,
they are not well-understood. The systems that exist today have generally been hand-crafted through
long periods of incremental design and evaluation; it is hard to say in any objective way what types of
system functionality can reasonably be offcred through direct manipulation techniques. Many of these
questions follow from the extensibility issuc raised in the discussion of conceptual models. For instance,
in the gauge example from Steamer, how would inexperienced users know that clicking the mouse on the
needle of the gauge allows them to change the rate of flow of the water? Real gauges certainly don't
behave in this way! A tutorial system might explain the different capabilities of the system to the user,
but the whole point of [irst-person systems is that they arc meant to be self-evident -- such a detailed
explanation of their use should be unnecessary.

An additional problem is that of conveying through the model enough of the underlying
application that users can understand which parts of the system they can directly manipulate. In the
Steamer example above, the gauge attached to the boiler is a means of controlling the temperature of the
boiler, and so can be manipulated by the user. Another gauge might indicate the pressure of the water
leaving the boiler, and so would not be manipulatable. Understanding which gauges can be manipulated
and which cannot is the same problem as was seen before: the link between the semantics of the domain
and the semantics of the interface. Dircct manipulation techniques arc a particularly promising way to
approach this problem, but they do not solve it.
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Second-Person Interfaces

In second-person inferfaces, uscrs interact with the domain by giving commands to a
computerized intermediary, who then carries out the desired actions.  Textual interfaces and some
graphical wmterfaces fall into this category.

Command languages. Command languages are the keyword-oriented interfaces that were
originally developed on and for the teletype-based computer systeins of the past. A command consists of
a string of words and sometimes special characters that, when processed by the system’s command
interpreter, specify the action the user wants to carry out. This command typically states the name of
an application program that will carry out the user’s request, followed by a list of optional arguments
that specify either data files on which the application program should operate or modifications to the
default operation of the program. The feedback to the command varies, depending on the program that
1s run as a result of executing the command.

Few ITSs have used command languages. Either the domain of the ITS and the studert’s
options in the domain have been so restricted that menu seclection or other highly restricted interaction
techniques have heen appropriate, or they have used a restricted form of natural language. Both
alternatives will be discussed later in this paper. In gencral, command languages are relevant to this
discussion because they may serve as the interface to an application program for which an ITS is being
constructed.

The advantages and flaws of command languages are by now well known. For experts who know
the numerous functions that can be accessed by the commands, a command language can be a very
efficient way of interacting with a system. llowever, the number of commands needed to cover the range
of functions available on complex systems is large, and mastering this sct is an imposing task even for
system experts. Further, the names for these commands arc rarcly derived from a cohcrent set of rules
and are consequently hard to remember or predict (Norman, 1981). The number of commands can
sometimes be reduced by collapsing several commands into one, with a set of options that can request the
finer-grained behavior. However, this solution merely shifts the user’s problem from remembering the
name of a specific command to remembering (or deducing) the appropriate set of options that must be
specified as part of the more general command.

Countless versions of command languages have been developed, both as interfaces to general
operating systems and as more specialized application programs. Somne are better than others. However,
they have flourished not because they have been good interfaces, but rather because they have been easy
to implement, could be run on many different computers and terminals, and for a long time were the
only kind of interface that could be supported by the available hardware.

It is hard to justify more research on the properties of command languages. This does not mean
that command languages are inherently bad or that designing a good command language for a specific
task is trivial. Quite the opposite: for some applications and users, a command language is a very
efficient means of interaction, and the task of designing a command language that provides an adequate
interface to a given task can be dilficult. But it is not worthwhile to study the fundamental
characteristics of command languages themselves, such as alternative syntaxes for specifying command
arguinents, or good techniques for abbreviating terms describing system functionality. The practical
probleins that arisc from the use of command languages today are not whether one method of specifying
argnments is better than another, but how to design a particularly good command language for a given
task and user population. These task and user constraints are independent of the command languages
themselves, and more abstract work on command languages will offer no insights into these issues. It is
time for rescarch to move on to problems with higher payoffs.
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Menus. Menus first came about as a feature of teletype systems, in which a list of options was
shown to the user, who selected the desired option by striking a specific key. This technique was never
really satisfactory. ['inding a reasonable one-to-onc mapping between a set of menu items and
alphanumeric characters was generally difficult, and the speed with which the options could be presented
was himited.  However, the advent of personal computers and bitmapped graphics revived the use of
menus. Display speed was no longer an issue because an entire menu could be displayed in a fraction of
a second. Because the strings representing the individual items could be arbitrarily long phrases, the
clarity and thereby the meaningfulness of the terms used in menus were increased substanti " .. Further,
since an item could be selected by pointing at a string instead of pressing a key, the need for a one-to-one
mapping between menu items and keyboard characters disappeared. These types of menus have been
frequently incorporated in workstation-based I'TSs, such as in Steauner (Hollan, Tutelins, & Weitzman,
198 1) and the presentation of proofl techniques in the Geometry Tutor (Anderson, Boylc. & Yost, 1985).

Like command languages, menu-based systems have rather well-defined advantages and
disadvantages. Menus can offer novices a reasonable interface to a system because they have simply to
recognize the desired action from its description in the menu rather than recall the name of the command
they need from memory (Shneiderman, 1986). In a sense, menu systems are a middle ground between
first- and second-person interfaces: being presented with information and subsequently selecting some of
that information is characteristic of second-person interfaces, but the direct way in which the user can
specify the information is more like = first-person interface. On the negative side, interacting with a
menu system can be tedious. Even a simple interaction can require selecting items from several menus.
This can be tedious, especially for experts, who generally prefer a more terse form of interaction that
takes advantage of -- in fact, relies on -- their greater knowledge of the system (Savage, llabinek, &
Barnhart, 1981). In addition, menus can pose special problems for tutorial systems, since allowing
students to recognize the solution to a problem instead of requiring them to generate it can defeat the
whole purpose of the tutor.

Just as was true with command languages, it is hard to see any large payoff coming from
continued research on the basic properties of menu systems, such as the optimal arrangement and
number of items in a menu or the colors the menu items should be displayed in. Visually acceptable
menu systems can be built with tonls available today; the real question is how to tailor a particular menu
system to a specific task and user population. Abstract research on menus themselves will not address
this question. As before, it is time for the resecarch community to move on.

Natural Language Inter faces. The image of an interface as a “second-person® agent working
for the user is perhaps most clearly coptured by a natural language interface. Here, so it seems, users
can communicate in a language they already know with an agent that will interpret their requests and
instruct an application program to carry them out. SCHOLAR (Carbonell & Collins, 1973), WHY
(Stevens & Collins, 1977), GUIDON (Clancey, 1982), and SOPHIE (Brown, Burton, & deKleer, 1982)
have all relied on some form of natural language, and much of their power came from the naturalness of
this style of interaction. IHowever, it is important to be aware of the difference between the kind of
natural language interaction we would like to have and the kind of interaction that is possible.

The most significant problem with natural language interfaces is that there are large differences
between the kinds of language that people use -- and want to use when talking to computers -- and the
kinds of language that current natural Ianguage systems can understand. This problem can best be
described in terms of the coverage a given natural language system provides for certain language
phenomena:

e Lezical and synlaclic coverage: the ability to handle the basic word tokens and sentence
structures that are entered by users.
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e Semanlic covcrage: the ability of the "front-end" natural language system to map parsed
words and phrases into meaningful concepts in the world of the "back-end* application
program. For instance, a natural language front end to a company’s employce data base
would have to understand that a query about "salary® refers to the EMP-SALRY column of
the EMPLOYEE table in the data base.

e Dialog coverage: the ability to handle intra- and intersentential relcrences, such as pronouns,
ellipses, and anaphora.

e Action coverage: the ability to translate the user’s stalement into an action or set of actions
that will carry out the desired operations in the application program to which the natural
language system is serving as an interface.

Providing adequate coverage of these phenomcena is very difficult, primarily because natural
language interfaces so strongly embody the second-person view of interfaces. DBecause the style of
interaction is very much that of speaking to an assistant who will carry out the requested actions, users
tend to treat a natural language system as if it had not ounly a human’s understanding of language, but
all the human’s world knowledge and problem-solving capabilities as well.

This has unfortunate implications for natural language systems. Users are likely to adopt a
vocabulary that exceeds the lexicon of the natural language system and may make use of obscure or
ungrammatical sentence constructs that exceed the capabilities of the natural language system’s parser.
They will often make considerable use of discourse phenomena such as ellipsis and anaphora, which are
very hard for natural language systems (o handle. They may also ask the system about things it has no
knowledge of, or ask the system to do things that either cannof be done by the application program or
that are logically possible but require vast planning capabilities to determine the series of actions
required to carry out those actions in the application program.

These shortcomings are unavoidable in an interface that places no constraints on how the user
may interact with it. They arise because without training or experience, users have no way of knowing
what words and sentences the system can understand, what kinds of things the system might know
about, or what actions the application program can carry out. There are two primary ways of
addressing this problem, and research on both of them is needed.

The first approach is to improve natural language technology so that natural language interfaces
can handle the kinds of language people want to use. This is a difficult and long-term task. However,
for short-term projects, this difficulty is lessened somewhat by the inherent constraints of the application
program that a given natural language interface serves. Natural language interfaces do not have to know
every word in the language, just the words that are relevant to the task served by the interface. If a user
refers to an unknown word, it may be possible to allow the user to add the missing word to the system’s
lexicon by defining it in terms of words the system already understands (Ballard & Stumberger, !' 7Z).
This may be especially feasible in the technical areas served by most natural language systems, where a
well-defined, highly interrelated set of terms often exists.  The limitations to understanding
ungrammatical language can be addressed by natural language techniques that pay special attention to
ungrammaticality (Carbonell & Hayes, 1983) or that are designed to be less sensitive to these problems
(Granger, 1983). Handling complex requests that result in sequences of application program actions will
require planning facilities, so research in natural language must also be aware of ongoing work in
planning (Allen & Perrault, 1980; Litman, 1986).
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Many of the usability problems with natural language systems became evident when these
systems were applied to real-world problems such as tutoring (Brown, Burton, & deKleer, 1982) and
database retrieval (Tennant, 1979). These practical attempts to use natural language have led to the
second approach to this problem, which is to acknowledge that all natural language systems are designed
to handle only a very specific subset of the user's language. Pecople will furthermore not be able to use a
system that implements such a sublanguage unless they are aware of the boundaries of that language.
Acknowledging this problem leads to a rather different research agenda than that derived from the
techuological approach. The important issues in this second, user-oriented approach are to find ways of
defining a sublanguage so that the boundarics are as obvious as possible, identifying interface techniques
that make the boundaries of the sublanguage cvident, and developing ways of allowing users to
investigate the boundaries and capabilities of the natural language interface and the application system.

The NLMenu system, marketed for personal computers by Texas Instruments, Inc. as
NaturalLink, is an example of this pragmatic approach. It presents users with menus that control and
are controlled by a natural language system running bencath the menu interface (Tennant, Ross, Saenz,
Thompson, & Miller, 1983). A user constructs a query in natural language by repeatedly selecting items
[rom these menus. After each selection, the system updates the list of menus from which items can be
selected and the contents of the menus themselves so that only perniissible continuations of the query are
possible. As shown in Figure 6.4, users are permitted to select iteins only from the windows with the
light background. The items in those menus (in Figure 6.4, there i> only one such menu) correspond to
legal continuations of the query in progress. As a result, any query constructed with the system is
zuarantced to be interpretable. This kind of interface is not appropriate for all areas where natural
language might be considered. lowever, for those areas in which it is appropriate, its constraints offer
significant advantages in understandability and ease of use.

The second problem with natural language interfaces is the amount of work required to
implement one. Two basic approaches can be taken to this problem. One approach is to capitalize on
the constraints in the domain addressed by the application program and to build the system in such a
way that it relies upon these constraints. This “semantic grammar® approach (Brown, Burton, &
delKleer, 1982; Hendrix, 1979) can produce a natural language systein relatively quickly. Additionally,
the techniques used to build such systems typically place more emphasis on the concepts underlying the
domain than on syntactic issues. Conscquently, these systems can handle a greater variety of sentence
forms than are syntactic natural language systemns, and are typically less sensitive to ungrammaticality.
The disadvantage of this approach is that the resulting system is so closely tied to the targeted donain
that very little of it can be reused when building a natural language system for a new domain.

The second approach to implementation is to base the system in linguistics theory and to
implement components to handle the lexicon, syntax, seinantics, pragmatics of the chosen language. This
work requires more effort than the semantic grammar approach, but it can result in a system that is
largely domain-independent. For cxample, although different domains have specialized lexicons, these
can be viewed as extensions of a large, basic lexicon that is shared by all domains. Similarly, the syntax
of language varies little, if at all, across different problem domains. As a result, the formal linguistic
approach offers the hope of producing not only a natural language system that is as flexible as the
domain-hound systems previously described, but also a set of tools and knowledge structures that can
serve as a foundation for natural language systems for many diflferent domains, thereby greatly reducing
the effort required to implement a new system. To be fair, it should be noted that techniques for
designing and implementing these systems so that their portability is maintained is still a research issue
(cf. Ballard & Stumberger, 1986; Hendrix & Lewis, 1981; Grosz, Appelt, Martin, & Pereira, 1987).
liowever, such portability is an inherent part of their design, which is not the case for the domain-
specific systems.  Middle-ground systems, such as TRUS (Bates & Bobrow, 1983) that employ both
semantic grammar and formal linguistic approaches are also being studied.
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Figure 6.4. A Typical NLMenu Screen.

Tradeoffs Between First- and Second-Person Interfaces

The discussion so far should not be taken as an attempt to establish the superiority of either
first- or second-person interfaces. What really determines the utility of a particular interface technique is
the task for which it is being used, and this interaction between the task and the interface can shift the
scales from [irst-person to second-person very capriciously. For instance, the direct manipulation
techniques of the Macintosh make moving [iles from one disk directory to another very easy. All a user
must. do is select the file by clicking on its icon with the mouse, move the icon into the desired
destination *folder" (an iconic representation of a disk directory), and click the mouse button,
*dropping" the file icon into its new directory. This is much easier than the corresponding operation in
a Unix system, which requires learning the name and syntax of the corresponding command, mv.

Suppose, however, a user wants to move all the Scribe manuscript files in one directory to
another. On the Macintosh, the user must identify cach file and individually select, move, and drop it
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into the target folder. This direct manipulation technique now becomes tedious, and the Unix user has
the easy job. Since the names of Scribe manuscript files are required to end with the characters .mss,
the Unix "wildcard” feature can be used to refer to all the desired files in an abstract, parameterized
way. They can then be moved with a single command: mv *.mss new-folder. This ability to
describe an arbitrary set of system objects in terms of the properties of those objects is relatively easy to
do in second-person interfaces, but difficult or impossible in first-person interfaces.

Second-person interfaces also give the user more precise control over system functionality than
the first-person interfaces do. In Steamer, for example, it is easy to change the rate of flow of water
through a valve by adjusting the ncedle on the gauge. However, if the user wants to set the flow rate to
be exactly 78.85492 gallons per minute, typing that number would be preferable to trying to adjust the
needle on the gauge by moving the mouse. Note that this shortcoming of direct manipulation techniques
comes from both the difficulty of precise control with the mouse and the difficulty of precisely reading a
number from a gauge.

These interface styles also differ in how they expose users to the capabilities of their systems.
The basic model of a second-person interface, especially a command language, is clear. The user types in
the name of the desired command, followed by some arguments, and waits for the specified function to
compute its results. Most of these systems have some simple but reasonably effective way to inform the
user of the available commands (e.g., typing HELP), as well as ways for the user to find out what a given
command does (e.g., typing HELP command-name). These techniques are not ideal -- {inding the desired
command can require searching through the documentation of several commands, and the difficulties of
the external-internal task mapping problem discussed earlier complicate the search. Ilowever, they are
better than nothing. In contrast, it is unclear how the user of a first-person interface can discover what
can be done with it, especially those things that are not self-evident in the design of the interface. Since
there are no keywords in a first-person interface, there are no easy ways to get at information about the
system. How does the user find out what it means to double-click and drag the mouse? Why should the
user think that doing this would cause something interesting to happen in the interface? How can the
system help the user learn these things? Because this interface style is new, little is known about these
problems. One promising approach to investigating them is Lo develop systems that allow students to
work with a domain from several different perspectives, including the external interface the system
presents to the world as well as some independent view of the knowledge underlying the domain. Burton
(1987) describes several examples of this meta-world approach.

As usual, when there is a choice between two attractive alternatives, the right solution is to try
to have both. First-person interfaces reduce the external-internal task mapping problem and thus greatly
enhance ease of use and learning. However, they are inherently very specific: Steamer's interface is good
for steam plants, but little else. As a resu.., two things are needed. One is a good set of tools for
building first-person interfaces. Because these 'nterfaces are unavoidably tied to the domain they
address, and new ones must be built for different domains their construction must be made as efficient as
possible. Second, their capabilities need to be augmented with second-person, assistant-like capabilities,
which can inform the user about the capabilities of the system and offer advice on how task-oriented
goals can be achieved. More will be said about these combinations of technologies later.

Alternative Interface Technologies

The hardware platforms on which these interfaces are presented have not yet been discussed.
Most of the interfaces described previously could be implemented on the now-common combination of
monochrome bitmapped display, keyboard, and mouse, if not on the even simpler teletype. This
omission should be corrected, for many of the advances in display and interaction technology have the
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potential to change the nature of interfaces dramatically. Furthermore, many of these changes are likely
to be especially relevant to the communication needs of tutoring systems and to allow information to
flow much more directly between a tutoring system and a student. These developments can then
contribute to the primary design goal of a good interface: to make the semantics of the domain evident
and manipulatable.

Graphics

The increasing availability of high-quality graphics has already significantly enhanced the quality
of computer interfaces. It is now possible to develop interfaces assuming the availability of a bitmapped
display of reasonable resolution -- at least 600 by 200 pixels on personal computers, and probably 1000
by 1000 pixels on workstations -- and some sort of software support for the creation of windows, menus,
and icons. Graphics technology has been used to excellent effect in many ITS interfaces, as described
earlier here and by Burton (1987). Color displays are often but not yet universally available. In
addition, the level of hardware support for complex graphics procedures is rapidly increasing. Many
systems now have hardware assists for line or curve drawing, and this technology is extending into
support for real-time animation and the coloring and shading of complex two- and three-dimensional
images. These developments increase the ability to use dynamic, highly realistic images in interfaces.

Sophisticated graphics technology should have great potential value for ITSs. If used well, color
can clarify the relationships among the components of a complex structure. Steamer has made good use
of color, as have a number of CAD/CAM systems (Hertzog, 1985). Animation has also played a useful
role in several systems, including several of the PLATO applications (Bitzer & Easley, 1965) and
Steamer, in which animation indicates the direction and rate of flow of steam through pipes.

Nevertheless, graphic techniques do not always enhance the quality of an interface. When the
precise role of graphics or color can be well-defined, there is much to be gained. However, it is also easy
to use graphical techniques in ways that are unmotivated, that add little to the interface, and that may
even detract from its quality. Some guidelines are available for insuring that the use of graphics and
color produce maximum perceptibility (Christ, 1975; Marcus, 1985; Tufte, 1983), but knowledge about
using color to enhance the semantics of the interface is little more than anecdotal. There simply is no
general theory for directing the effective use of sophisticated graphics techniques in human interfaces.
Until such a theory is found -- and finding one will be difficult -- it is likely that the field will have to
muddle through by experimenting and prototyping.

Large Displays

Even though many current workstations offer 17=inch, 1000 by 1000 pixel displays, most users
and system designers want more. To deal with the problem of allocating the existing screen space,
techniques exist for presenting multiple overlapping windows of varying sizes and shapes (Teitelman,
1984a) or for “tiling® windows together so that they do not overlap but still occupy all the space
available on the screen (Teitelman, 1984b). The more basic alternative to these approaches, of course, is
to increase the size of the screen so that there is room for more windows and more information.

However, the screen size issue does not simply refer to the physical size of the screen, which can
be easily increased with projection systems now available. Rather, the number of pixels on the screen as
well as the physical size of the screen must also be increased to accommodate a greater amount of
information. This task is harder. Plasma and liquid crystal technologies, which offer both higher
resolution and larger size, are becoming available. However, they are still quite expensive. An 18 by 22
inch LCD display currently costs about $40,000, and a 30-inch plasma display with a resolution of about
100 pixels/inch was recently marketed at $250,000.
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Of course, these prices will eventually drop, and these technologies will become cost-effective for
at least some applications. In the meantime, the psychological implications of these displays should be
considered. A significant increase in the size of a display is likely to produce problems of attention and
salience: it will do little good to put large amounts of information on a display if users can’t find the
information they need. This is not to argue against the potential value of large displays, but only to
note that the user-oriented aspects of the technology must also be considered.

Small Displays

A small, portable, high-resolution display would be valuable in such situations as the [ield
placement of ITSs for maintenance and on-the-job training. The LCD displays of portable computers are
limited in resolution, speed, and the availability of color, but they are adequate for the field placement of
ITSs that do not make extreme demands on dispiay technology (assuming that the computing power in
the machine is sufficient to support the ITS). A portable version of the Lisp Tutor (Reiser, Anderson, &
Farrell, 1985) or of Johnson’s fault diagnosis system (Johnson, 1987) would be straightforward from the
perspective of the interface; a portable version of Steamer is farther away, but possible. The main
bottleneck at the moment -- the limited computing power of portable computers (compared to Lisp
machines and 68020-based workstations, that is) -- will eventually disappear.

A secondary area of interest is much smaller displays -- perhaps one or two inches wide -- that
might be embedded in specialized maintenance or job-training devices that incorporate ITS technology.
Color, high-resolution LCD displays of this type are already available, as seen in the pocket television
scts from several manufacturers. The limiting factor in the use of these displays is the visual acuity of
the user; they are suitable for the display of a small amount of text or for graphic displays that are not
too complex. These displays may be useful in certain classes of ITSs, but their limitations need to be
kept in mind.

Videodiscs

One of the problems with graphics technology noted earlier is the difficulty of generating real-
time animation and highly realistic images. In many cases, this problem can be finessed by creating the
desired animations or images ahead of time and encoding them on a videodisc. These sequences can then
be merged with computer-generated information to produce the desired elfects. The capacity of these
discs should be sufficient for many tutorial purposes: a 12-inch videodisc can hold up to 54,000 images,
which results in up to an hour of video (Brewer, 1986). Several tutorial systems have already used
videodiscs with promising results, especially in the demonstration of procedures involving real-world
devices (Bonissone & Johnson, 1984). There is no strong theory to guide and motivate the use of video
as part of interfaces and [TSs. However, the body of experience with these systems is growing, and
opportunities for effectively using this technology are becoming known.

The primary limitation of videodisc technology is that at present these discs are read-only
devices. All the information that the designer wants to present via a videodisc must be anticipated,
created, and stored on the disc as part of the development of the system. This limitation has two
implications for 1TSs. First, it may not be possible or practical to identify all the unique states into
which a student might enter. In such cases, it will be necessary to generate the desired images with
real-time graphic techniques during the execution of the system. As noted earlier, however, this solution
is becoming increasingly feasible. Second, constructing a master disc from a videotape containing the
desired images is both time-consuming and expensive enough to limit the number of prototypes and
experiments that can be made with different discs: a test disc currently costs about $400, and a
production master costs at least $800. Some prototyping can be done with the videotape that is
ultimately used to produce the videodisc, but this work is feasible only when the time required to find
the relevant part of the program on the videotape does not interfere with the user’s interaction with the
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system. The prototyping problem will be partially relieved by WORM discs (write once, read many
times) which will allow instructional developers much more flexibility in experimienting with different
programs while preserving the random-access capabilities of videodiscs.

As an adjunct to videodisc technology, there is much interest throughout the comnputing industry
in CN-ROMs (Lambert & Ropiequet, 1986). CD-ROMs use the technology that produces audio compact
discs to store and retricve large amounts of digitized information. At present, CD-ROMs can hold about.
550 megabytes, which makes them an appealing alternative for storing large documents such as
dictionaries and encyclopedias, documentation, and source code, as well as single digitized images.

However, creating moving images from CD-ROMs is difficult. Substantial external hardware is
required to reconstruct the image from the bits that encode it, and the data transfer rate of current CD
players is not high enough to support live video. The current capacity of 550 megabytes is only enough
to store five or six minutes of video. Nevertheless, all of these problems are being addressed because of
their importance for the audio entertainment industry. This work will result in increased capacity and
retrieval speed, and advanced techniques for encoding and compressing video images (Brewer, 1986). In
addition, work on digital television, which is required to regenerate the video from the encoded signal on
the disc, is well underway.

Touch Screens and Tablets

In some circumstances, touch technology can be a useful alternative to mice or other pointing
devices. Various techniques exist for sensing the position of fingers on a computer display; alternatively,
a special-purpose tablet can be used that contains a predeflined set of options. Touch screens can be very
uscful when a separate pointing device is undesirable, as in field placement of portable systems. At one
time, the designers of SOPHIE experimented with the use of touch panels by placing a schematic of the
circuit being repaired on a toucih panel. This allowed users to specify circuit components by touching the
schematic (Soloway & VanLehn, 1985).

The primary shortcomings of these systems are the limited resolution available in the detection
of finger position and the parallax problems that result from the curved shape of the display and the
changing viewing angle as the user points at different parts of the screen. The resolution problem can be
addressed through the use of a stylus, but adding an external device defeats much of the purpose of touch
systems. If an interface can be designed so that these problems can be minimized, a touch screen may be
a reasonable alternative to other pointing techniques.

Speech Recognition and Understanding

The ability to talk to a computer instead of typing has been a long-held dream. Many people
cannot or do not want to type, and keyboards are sometimes impractical, as they are when the user’s
hands are busy performing other tasks. In these cases, speech recognition seems like the ideal solution.
However, as with natural language, reality has not caught up with the dream. Analyzing real-time
speech is very difficult, and the technology is still inadequate.

Current speech systems differ in whether they are speaker-dependent or speaker-independent. If
the system is speaker-dependent, it must be pretrained on the speech of a specific person. The tradeoff
between these two characteristics, as one might expect, lies in the size of the vocabulary that the systems
can handle. At present, low-cost speaker-dependent systems are available that can handle vocabularies of
about 100 to 300 words with reasonable accuracy (about 709%). More powerful and more expensive
systems are beginning to reach levels of 1000 words. In contrast, speaker-independent systems are
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restricted to much smaller and more specialized vocabularies, often the digits from 0 to 9 and the words
ycs and no (cf. Cater, 1984).

Systems also differ in whether they are capable of discrete or continuous recognition. When
speaking, people normally do not pause between words. Rather, words flow into each other, forming
blocks of continuous speech sounds. This obscures the boundaries between words and greatly complicates
the recognition process. Most existing systems require that speakers segment their speech so that the
recognition algorithim does not have to deal with the word boundary problem. Systems capable of
continuous recognition require more complex algorithms and are typically less successful than those with
discrete recognition. Most commercial systems assume discrete speech, and continuous systems are
currently limited to vocabularies of about 75 to 100 words. Conveniently, some evidence suggests that
people can adapt to the requirements of discrete speech rather easily (Biermann, Fineman, & Gilbert,
1985; but see Gould, Conti, & Hovanyecz, 1981}). The word boundary problem may then not pose a
serious barrier to the use of this technology.

The above discussion is meant to characterize what is generally referred to as speech recognition
-- identilying which member of a rather small set of words was just spoken. This task is very different
from what is usually thought of as "talking to a computer." This latter, more complex process is better
thought of as speech understanding, in which the speech being analyzed is not a word or two, but a
longer, more meaningful utterance. This complicates the interpretation task greatly, for it presupposes a
natural language understanding system capable of interpreting the meaning of the utterance once the
words have been identified. Consequently, spcech understanding inherits all the problems of natural
language understanding. In addition, spoken language has long been known to be much less grammatical
and well-structured than written or typed language (Dreiman, 1962; Horowitz & Newman, 1964). Thus,
the natural language understanding task is complicated even more.

Further, regardless of the complexity of speech understanding, speakers are likely to want much
larger vocabularies than most current systems can handle. One way around this limitation is to partition
the complete vocabulary into several smaller vocabularies and to use a predictive parser to select the
specific vocabulary that is in use at any instant. That is, when the parser is expecting a verb, the
vocabulary containing verbs would be loaded into the speech system. This approach is reasonable for
simple grammars where such strong predictions of word types are possible, but it breaks down when
language is richer and predictability decreases. Speakers are also likely to tend more toward continuous
speech, further complicating the speech processing component.

The most promising work in speech understanding (Adams & Bisiani, 1986; Erman, Hayes-Roth,
Lesser, & Reddy, 1980) has integrated speech and natural language processing so that the attempts at
understanding one level can influence and be influenced by attempts to understand the other. Although
there is promise for the future, speech technology can be a useful part of present-day interfaces il it is
used in ways that reflect its limitations. In some situations, it can be a good way to enter simple, short
commands or to select iltems from menus. Much more research will be required before the more complex
and desirable uses of speech and spoken language are possible.

Speech Coding and Speech Synthesis

These techniques have a much less ambitious goal than speech recognition and understanding.
They are not meant to identify or extract the meaning of an utterance. Instead, they are concerned with
storing and reproducing speech sounds as part of an interface.
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The most straightforward way to produce voice sounds is to digitize and store the analog speech
waveform. At a later time, these samples can be passed through a digital-to-analog converter and turned
back into sound. If the sampling rate is high enough -- at ieast 40,000 samples per second -- very high-
quality speech can be obtained. Unfortunately, sampling at such high rates produces a very large
amount of data: five seconds of sound would require about a half megabyte of storage.

The alternative, of course, is to encode the speech waveform in some way. Techniques for doing
this can reduce the size of the stored waveform considerably, but the quality of the reproduced speech is
also somewhat reduced. The simplest of these techniques, linear predictive coding (LPC) and adaptive
delta pulse code modulation (ADPCM), perform relatively straightforward transformations on the
waveform and can reduce the size of the stored waveform by several orders of magnitude.

The next step beyond speech coding is speech synthesis. Techniques for speech synthesis
represent a speech waveform in a more abstract form than the wavelorm itself, typically phonemes or
words. The playback system is then responsible for translating this representation into speech. This is
true synthesis: the user can specify a novel set of phonemes or words to the system and produce novel
speech. Several techniques are available, primarily phoneme synthesis, in which the user specifies the
phonemes that are to be "spoken,” and synthesis by rule, in which the user can specily a string of words
that are to be spoken and then rely on transformation rules to convert the words into the proper set of
phonemes. Both of these techniques can produce acceptable but identifiably synthetic speech. The major
benefit is that the data rates that are required to produce this speech are greatly reduced, often to as low
as 70 to 100 bits per second.

At present, speech synthesis technology is rather good; as in other areas, it is much more
advanced than is the knowledge about how to use it wisely. Little work has been done on the kinds of
messages that should or should not be presented by speech. Nevertheless, the advantages to speech are
clear. It takes advantage of a powerlul communication channel, and it can pass information to users
without cluttering up the display with a message of possibly only temporary relevance. Also, it does not
require users to divert their eyes from some part of the display that might be critical to their interaction.
These techniques have been used by Nakatani, Egan, Ruedisueli, Hawley, and Lewart (1986) to develop a
speech-oriented tutoring system for the Unix vi text editor. This system uses synthetic speech to present
tasks to the user, report user errors, and offer hints and suggestions. The focus of this work has been on
how speech can be used effectively in training tasks; more work of this sort should help clarify the true
value of speech output in the interface. :

A Brief Note on the Dangers of Technology Projections

Predicting trends in computer technology is very risky. Many of these predictions are probably
very conservative, and readers of this chapter several years from now may well be shaking their heads
and wondering how the speed of these developments could not have been foreseen.

Such is life. However, pretend for the moment that tomorrow everything described so far --
three-dimensional graphics, large-vocabulary continuous speech recognition, huge displays, and the like --
was widely available. [t is still unclear that we would know how to use this technology wisely. Right
now, we are actually in a very good position from a research perspective. These technologies are more or
less available now, although not in forms as cheap or convenient as we would like. We have the
opportunity to experiment with them from the user’s perspective, to understand their strengths and
weaknesses, and to learn what opportunities they offer to us. This is not to say that these technologies
are all "solutions in search of problems,* but we must be careful to look beyond the simple technology to
the larger question of how to use them to enhance the interface and the user’s capabilities.
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IlI. GOING BEYOND INTERFACE TECHNOLOGY:
TOWARD INTERFACE SEMANTICS

It is easy to list the developments in interface technology and to speculate about their influence
on interfaces and ITSs. However, it is difficult to go much beyond speculation because the problem these
developments address is underconstrained. If the issue is really the quality of the interface -- its power,
case of use, and ease of learning -- we must ultimatcly be concerned not with the outward appearance of
the interface but with the underlying structure of the interface and the application program. What is
most important is not how the interface looks but how it allows the user to understand the capabilities of
the underlying application program. Because these capabilities are inherently constrained by the domain
that the application addresses, it is also important that the interface convey the important properties of
the domain. Clearly, the appearance of the interface and the technologies that can contribute to this
appearance are an important part of this process. However, the physical appearance of the interface
should never be the driving factor in the devclopment of an interactive system. That role must be
played by the semantic constraints inherent in the application and the domain.

If the proper role of the interface is to help the user understand the semantics of the application
and the domain, there would seem to be two ways to do this:

Make the Constraints Self-Evident in the Interface

This is the {irst-person approach to interfaces. Graphics can be used to create an interface with
objects and relations that expresses the semantic constraints of the domain. Things that are
manipulatable in the domain are manipulatable in the interface, and in much the same ways. As a
result, users do not have to learn how to use a general-purpose interface, their knowledge about the
domain will constrain and guide their use of the system.

Let the Interface Reason About and Explain its Constraints

As noted earlier, first-person techniques are not always desirable, possible, or completely
effective. In these cases, second-person techniques are required. The interface must be given the ability
to inform the user about the capabilities of the system, the actions that can be carried out, the conditions
under which they are possible, and their consequences. This advice can be given to users in several ways,
corresponding to the different tutorial strategies discussed elsewhere in the ITS literature: question
answering, coaching, guided exploration, and the like.

An ideal interface would combine these techniques to cover all of the constraints present in the
system. Users would therefore always be able to induce a certain characteristic of the system from the
appea-ance of the interface or to enter into a dialog with the system advisor to resolve a problem. All of
this is, of course, easier said than done. Much is not understood about the construction of sell-evident
interfaces, and the development of first-person techniques depends on progress in this area. Similarly,
the second-person techniques depend on substantial progress in artificial intelligence technology,
especially knowledge representation, reasoning, and natural language understanding.

The entire set of constraints that affect the relationship between a user, an interface, and an
application domain is hard to enumerate and address. The following sections present an initial
categorization of these constraints and an attempt to identily some of the most challenging problems
facing the development of good user interfaces.
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Task Constraints

The real issue here is mental models (Gentner & Stevens, 1983); that is, in understanding how
people think about semantically rich domains. low are these domains broken up into meaningful
components, and how are these components related to each other to reflect the constraints of the task
and the domain? llow do people resolve apparent or real inconsistencies in mental models, and how do
they choose among alternative representations of a task? What are effective ways of embodying
constraints in an interface, and how can users best be given control over them? Answers to these
questions are critical if we are to build interfaces that do a good job of reflecting domain semantics and
helping users understand and manipulate (hem.

User Constrainis and Cognitive Limitations

One of the most important properties of a good user interface is that it can augment and
compensate for weaknesses in the users’ cognitive abilities. For instance, a good interface is in many
ways an external memory system. Menus support recognition over recall, and iconic techniques such as
those used in Steamer (Hollan, Hutchins, & Weitzman, 1984) and VSTAT (Miller & Blumenthal, 1985)
capture and preserve information that users would otherwise have to keep in working memory or retrieve
from long-term memory (Anderson, Boyle, Farrell, & Reiser, 1984; Anderson & Jeffries, 1985).
Similarly, the Geometry Tutor’s (Anderson, Boyle, & Yost, 1985; Figure 6.5) display maintains a
concrete representation of the current state of the proof process. This display relieves the student of the
necd to maintain a well-organized representation of the proof in working memory, a difficult task when,
as is inherently the case in a tutoring situation, the student does not have a sound understanding of the
information being worked with. The display also reifies the proof process: it makes the student’s thought
processes themselves a subject of study. A good interface can also help users understand the results of
complex processes. Rather than requiring users to infer or guess the effects of their actions, these effects
can be made an explicit and visible part of the interface, especially through direct manipulation
techniques (cf. Norman, 1986).

Designing interfaces that help users with these limitations will require good models of the sources
of these limitations: basic human cognitive processes. An appropriate division of labor must be
established between the user and the system, and it must be based on a good understanding of what
people are capable of and how their cognitive capabilities complement those of computer systems.

Instructional Constraints

The domain being tutored and the instructional role played by the ITS inevitably drive the form
of a tutorjal system’s interface. Instruction that entails continuous dialog between the student and the
ITS would call for a strong natural language understanding component, while a coaching system that
monitors uscr actions and offers advice about more cfficient use of the system would not. Instead, for
this coaching system, a first-person interface that supports high-level, semantically meaningful user
actions and thercby eases the diagnosis problem would be more desirable. A domain that requires
mastery of a large and complex body of knowledge could benefit from powerful and flexible tools for
browsing and editing, such as those available in GUIDON-WATCII (Richer & Clancey, 1985; Figure 6.6),
an exploratory system for medical knowledge. Designing the "face® of the ITS requires identifying the
kinds of information that are relevant to the instructional task the system is dealing with, and making
sire that interface techniques capable of conveying this informalion are available and are used.
Ultimately, the choice of interface techniques is an issue of pedagogy and tutorial strategies.
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Figure 6.5. Anderson, Boyle, and Yost’s Geometry Tutor.

A second instructional issue is how the ITS presents information to the student. This is a matter
of deciding in which of several different ways a specific piece of information should be presented:

including a table, graph, piece of text, or diagram.

The nature of the interface controlling the

application should direct this choice of course: consistency of presentation is important. However, when
no such constraints exist, the user often benefits when different kinds of information are presented in

ways that emphasize their most important propertics.
others require a table for greatest clarity.

Some relationships are best shown graphically;
The simultaneous presentation of the same body of
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information in several diffcrent formats is another pragmatic middie ground. The real questions are
what point is this information trying to make, and what presentation techniques are best for conveying
this point? At the moment, the prescntation of information must be determined either by the system
designer, who can "hard code® a few alternatives into the system, or by the users, who might be allowed
to vary the presentation format according to their own prefcrences and the ongoing requirements of the
task. llowever, work has begun on automated techniques for examining a set of data and a situational
context and choosing an appropriate display format (c.g., Mackinlay, 1986; Myers & Buxton, 1986), so
some of this cffort may ultimately be taken on by the interface itself.

A third issue concerns the interpersonal spirit in which the information offered by the ITS is
ultimately presented. An ITS could present information to the student in a very unemotional way,
emphasizing that the tutor is really just a computer system; or the ITS could attempt to portray a
human teacher and present information in a fricndly and encouraging way.

Both styles have benefits and dangers. Bloom (1984) has argued that much of the benefit
perceived in individual human tutoring comes from the cooperative and empathetic style of interaction.
The *humanized* ITS should, in principle, be less threatening and more motivating. However, a human
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style of communication should follow from the principled design of the interface and from the knowledge-
deiven- stratogic-capebilitios. of the intelligence at-the-heast-of the ITS. . Simply auriting all. thr PRINT
statements in the system in a "Now, Johnny" tone will not work. Most students quickly see that such
statements are artificial, and what is meant to be helpful and motivating soon becomes a distraction.

We should also remember the problems seen with natural language systems whose capabilities
are limited: because of their ability to handle some instances of language, their users will sometimes
assume far greater capabilities than are actually present, and the overall effectiveness of the interface
declines as a result. Similar problems could arise in [TSs built with a strong [acade of friendliness: users
might inappropriately presume that the system understands them more thoroughly that it really does.
The "impersonal computer® style may clarify the capabilities of the system more successfully; it would
fail because it leads th~ user to expect too little.

The most realistic approach to the issue of style is to accept the fact that ITSs are implemented
on computer systems and to minimize human characteristics in the interaction. This does not mean that
interaction in ITS should be as primitive as that common in the computers of the 1950’s. In fact, one of
the attractive aspects of using graphics in an interface is that they can increase users’ interest and
motivation (Malone, 1981). Motivation is certainly an important part of education and tutoring; so
important, in fact that designers should consider it in its own right, and not try to add it to a system
like a coat of paint.

Physical Constraints

In many ITSs, the application domains being tutored by the system are highly symbolic and
conceptual, such as basic cognitive skills or computer programming. In these cases, as long as the
systems’ interfaces provide good models of the domains, they can typically rely on relatively simple
graphic or textual presentation techniques for communicating with the student; the usual bitmapped
display, mouse, and keyboard combination are often sufficient. Houwever, for a tutorial task that deals
with a real-world device and environment, these techniques may not be enough. Instead, a highly
realistic depiction of the device or environment and equally realistic techniques for intcracting with this
interface may be necessary for the student to understand and learn the domain. This belief has led to
the dev-lopment of flight simulators and maintenance training systems that are based on real-world
devices, and that give students direct experience with both the devices and the problem domain on which
they are used.

An alternative view of instruction for real-world devices and environments is that highly realistic
interfaces are not required. Students certainly need to understand the concepts in the curriculum, but
these can often be presented in relatively abstract ways that not only are less expensive and easier to
implement but also may improve the learning environment in the process. Thus, in Steamer, abstract
illustrations replace much of the real-world appearance of the components of the steam plant. Water
tanks appear as boxes or cylinders, and pipes as rectangular conduits between tanks, but no attempt has
been made to make a tank or pipe look exactly as it does in a real steam plant. Doing so would actually
impair the student’s ability to understand the operation of the steam plant, because the student would no
longer be able to see the water levels in the tank or the direction and rate of flow of water and steam in
the pipes. There is no question that students ultimately need to become familiar with real steam plants,
but the claim here is that it is possible to separate the physical aspects of the problem from the cognitive
aspects, and to teach them separately, using whatever techniques are most appropriate.

Of course, hybrid systems are possible. As noted earlier, real-time, three-dimensional animation
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is rapidly becoming feasible. The displays in a flight simulator may soon completely simulate a pilot’s
environment with computer graphics techniques. Research at Wright-Patterson Air Force Base has been
cxploring stereoscopic display techniques to generate and project, via a helmet incorporating small
television screens positioned in front of the student’s eyes, an animated, three-dimensional flight scene.
The system reacts to both the student’s head movements and the student’s control of the simulator.
However, the displays are still highly schematic. Hills and rivers do not look exactly like real hills and
rivers, and the display is filled with symbols that denote and describe especially important objects (e.g.,
friendly and enemy aircraft) in the student’s field of vision. This work is a good example of a system
that identifies the physical and cognitive components of the task and applies appropriate techniques to
each.

Another advantage of the middle ground between the abstract and representational positions is
that it can accommodate change in the user’s requirements as their understanding of the domain changes.
Johnson (1987) has found that novices can benefit fromn concrete representation of the devices they are
learning about. However, once they have understood the basic properties of the devices, they are better
off with a representation of the devices that is more abstract and emphasizes the domain semantics, the
primary focus of their learning at this point.

The key to designing a good interface is to understand the task, the information that must be
presented, and the ways in which students might interact with it. In many situations, highly realistic
interfaces may not be desirable because one or more of these requirements is violated. For instance, it
would probably be possible to build a new version of Steamer with a highly realistic, three-dimensional
computer graphic model of a steam plant. However, the user of such a system would need to manipulate
and control this model: to reach into it and change its oricntation, open and close valves, and inspect
the contents or status of the device. This leads to two problems, one technological and one psychological.
The technological problem is that the system would have to track the position of the user’s hands with
respect to the perceived position of the image. Two-dimensional pointing devices such as joysticks or
mice are not particularly effective for this task because they do not provide for movement in the third
dimension. One alternative is to use small sensors that can be attached to the user’s hand, similar to the
Polhemus device used in the "Put That There" system (Bolt, 1980; Schmandt & Hulteen, 1981). More
recently, a glove has been developed for use with personal computers, which senses the position of the
user’s hand in three-dimensional spacc, the tilt of the hand, and whether the user’s fingers are straight or
bent (Zimmerman, Lanier, Blanchard, Bryson, & IHarvill, 1987). Relating the tracking information
produced by these devices to the image is complex but possible.

The real problem, of course, lies in what the student takes away from the interaction. In
Steamer, the important concepts Lo be acquired by the user are not physical but functional. Depending
on the student’s needs (cf. Burton, this volume; Johnson, 1987), highly realistic presentation techniques
may even impair learning. However, these techniques may be very useful in problem areas such as
molecular modeling (Feldmann, 1985), in which a three-dimensional model of molecular structure is the
most appropriate way of characterizing and manipulating the information to be acquired by the student.
As before, the real task is to understand the goals and needs of the student, and make sure that the
interface offers a good match to these.

Tutorial Constraints

There is a crucial relationship between the interface and the capabilities of the ITS. One part of
this problem is the extent to which the interface can ease the diagnosis and remediation tasks of the ITS.
First-person interfaces can present students with a good picture of the underlying application, one that
provides a meaningful context for explaining and discussing the domain and a student’s possible problems
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with it. First-person interfaces can also enhance ITSs through their reliance on the manipulation of
semantically rich graphic objects. In an interface buiit around such objects, the user’s actions are also
high-level and semantically rich. The semantic basis of these actions can make diagnosing problems and
hypothesizing about the student’s knowledge much easier. Another possibility is to embed *bug objects*
in the interface; manipulation of these objects indicates that the user harbors a particular misconception.

The advantages of these high-level interfaces can be seen by comparing two different types of
tutoring systems. In the Geometry Tutor {Anderson, Boyle, & Yost, 1985; Figure 6.5) students make
very high-level assertions about the domain. They focus on specific parts of the proof and identify some
of them as being especially significant and worthy of elaboration. As a result, the tutorial system
underlying this interface can reason directly about the student’s assumptions and beliefs about the high-
level geometric concepts that are being manipulated. The system can therefore make inferences about
misconceptions and future actions and explain past actions in a meaningful way.

In contrast to the Geometry Tutor, consider several coaching systems for text editors such as
Emacs (Miller, 1982; Fischer, Lemke, & Schwab, 1985; Zissis & Witten, 1985). These systems monitor a
user’s keystrokes and offer suggestions for making the user’s interaction more efficient. For instance, if a
user moved the cursor forward character by character over several words, the coach might suggest using
the editor’s *forward word® command.

The problem with these coaching systems is that the interface actions do not carry with them
much in the way of semantics -- they do not constrain the domain enough to support strong inferences
about future or past actions. For example, in a text editor, moving the cursor forward by a character
does not limit a user’s subsequent actions much, if at all. Consequently, the inferencing and advising
that the system can do is very limited. About the most it can do is suggest more powerful commands
that subsume several recently observed actions, as in the "forward-character, forward-word* example.
This problem lies not in the system but in the domain: people who look over the shoulder of text editor
users and try to infer high-level editing plans do not seem to be much more successful than these
programs.

The utility of Emacs coaches and other systems such as operating systems interfaces (cf. Shrager
& Finin, 1982) that apply to semantically unconstrained domains is an empirical question. It may be
that the low-level advice they make available is useful enough to warrant their development. However,
the more general point is that systems with low-level, semantically weak interface actions complicate the
diagnosis problem greatly and are probably not good candidates for the application of these low-level
coaching techniques. In general, interfaces should be built at as high and semantically rich a level as is
appropriate for the task and the needs of the user. This should make the system easier to learn and use,
and also enhance the ability of the ITS to make powerful inferences that lead to useful advice and
tutoring.

Another crucial relationship between the components of an ITS is whether the intelligent
component of the [TS -- the agent capable of reasoning about the domain addressed by the interface --
can influence the design and the capabilities of the interface. The presence of an active, knowledgeable
agent could allow a graphical, first-person interface to insure that the user could carry out only
semantically acceptable actions. Consequently, major classes of user errors could be eliminated simply by
preventing the user from making them.

However, as the power and the subtlety of controlling the interface increase, preventing user
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errors becomes a more controversial issue in the basic design of the system. In some cases, letting the
user make mistakes can be useful because it allows misconceptions to be identified and corrected in a
specific, problem-oriented context. If these mistakes are prevented, the misconceptions may linger and
need to be detected later by techniques that are computationally more costly and complex, and less
certain to succeed. DBetter results may be achieved in the system as a whole by intentionally reducing the
level of intelligence that is playing an explicit role in the interface. The appropriate level of intelligence
in the ITS certainly depends on the specifics of the task. The point is, however, that issues of interface
design and implementation can quickly slip into the area of tutorial strategy, and vice versa.
Cousequently, a system-wide approach to the development of an ITS is essential to ensure that the parts
of the system complement one other.

Implementation Constraints

An ITS is really three things: an educational instrument, an interface to an application program,
and a knowledge-based system. The discussion thus far has focused on issues related to the educational
and tutorial aspects of these systems and the ways that interface and artificial intelligence technologies
can improve education and ease of use. The issues related to the latter two aspects focus on how these
systems are implemented, and, while these issues are more pragmatic than theoretical, they cannot be
ignored.

Interface Implementation

The tools that are commercially available for implementing pcwertul graphical interfaces, such as
SunTools for the Sun workstation, the window systems on Lisp workstations, and the Macintosh Toolkit,
are very limited. They typically support basic window properties and operations (e.g., sizing, scrolling,
and refreshing), multiple text fonts, menu presentation and selection, and simple graphics functions (e.g.,
line and curve drawing and somectimes region filling). Unfortunately, there is a great distance between
these capabilities and those needed to implement a system with the graphic capabilities of Steamer or
Trillium (llenderson, 1986). As a result, many research projects that are actively concerned with
extending these capabilities in ways that provide the interface designer -- and thereby the TS designer --
with significantly more power.

These efforts take two rather different approaches. The user interface management system
(UIMS) strategy attempts to separate the interface component of an application program from the more
direct computational part. The idea here is that the UIMS should serve as a high-quality interface to a
pre-existing application program. It should be responsible for translating users’ interface actions --
perhaps menu and icon selection -- into whatever form is required by the application program -- perhaps
a command language designed ten years before the integration of the system with the UIMS. If the
UIMS is kept separate from the application program, the same UIMS can be used with many different
applications, yielding a consistent and high-quality interface across all these applications. Examples of
the UIMS approach include FLAIR (Wong & Reid, 1982), COUSIN (Hayes, Szekely, & Lerner, 1985}, and
ADM (Schulert, Rogers, & Hamilton, 1985).

The problem with the UIMS approach is that the communication channel between the UIMS and
the application program is very narrow. Typically it is either a character stream across which command
language statements and resuiis are passed or a very limited set of system calls. If the interface needs to
know a great deal about the ongoing state of the application program in order to carry out its
operations, this narrow band of communication may be inadequate. This gap is likely to widen as
application programs become more powerful and intelligent and the interface to these programs must
display the internal state of the programs in even greater detail. ITSs and the computer-based
applications for which ITSs are being developed certainly fall into this category.
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One approach to this problem is for the UIMS to maintain a simulation model of the application
program so that information about the state of that program is available to it. However, these models
are very difficult to develop and to synchronize with the application programs. The alternative to the
UIMS approach is to abandon a strong scparation between the application and the interface tools and
instead to integrate the interface and the application. In this way, access to the information about the
state of the application program is made available in the values of global variables or function :alls. The
large, common address space of Lisp environments supports this communication in a very direct way,
and designers of many of the systems with powerful interfaces and complex application programs have
chosen this route (Bocker, Fischer, & Nieper, 1986; Miller & Blumenthal, 1985; Hutchins, Hollan, &
Norman, 1986; Henderson, 1986; Myers & Buxton, 1986; Mackinlay, 1986; Weitzman, 1986). High-level
interface tools are just as central to this work as they are to the UIMS approach. If these tools are good,
they can provide much of the application independence thal is available with UIMSs, although some
recoding of the application is inevitable. The integrative approach to intelligent interface development
expands the communication path between the interface and the application, and allows rich
communication between a complex system and its interface.

Knowledge Acquisition

The absence of good design and development tools is also evident when ITSs are available as
knowledge-based systems. Commercial expert system shells may be useful in implementing the
underlying mechanics of ITSs, but they offer little help on the knowledge acquisition problem itself.
Collecting and encoding the knowledge needed to build an ITS is still a long and difficult task and
substantial project resources must still be allocated to this stage. Of course, the lack of good high-level
tools for knowledge acquisition is a serious problem not merely for development, but for testing and
maintenance as well.

The interface construction and knowledge acquisition problems ultimately merge when
implementation finally begins. Many ITSs, especially those that provide training on specific application
programs or simulated devices, require two virtually identical stages of implementation. First, the
running application program that is the basis of the training system must be built. Once it is completed,
what amounts to a second version of that program must be built. This version, the knowledge
component of the ITS, is essentially a symbolic representation of the application, which captures the
important aspects of that application program in such a way that the ITS can reason about it. The
development of an ITS is therefore a difficult and time-consuming task with significant opportunities for
error.

Something must be done about the difficulties of implementing these systems. Ultimately, tools
like the authoring languages for traditional computer-aided instruction systems (Bitzer & Easley, 1965)
are needed, but they must appreciate the knowledge requirements of ITSs and the likelihood of a link
between the ITS and the more advanced interface techniques that are now important parts of these
systems. Bonar’s Bite-Size Tutor (Bonar, Cunningham, & Schultz, 1986) and Anderson’s PUPS Tutoring
Architecture (Anderson & Skwarecki, 1986) are initial steps toward splitting the knowledge relevant only
to tutoring apart from domain-specific knowledge. Other researchers are seeking a merger of the
interface and knowledge components of the problem so that some of the effort of defining knowledge
about the application area can be used to define the interface, and vice versa (Miller & Blumenthal,
1985; Sibert, Hurley, & DBleser, 19886).

IV, WIIERE CAN WE BEGIN?

The preceding discussion has enumerated some important research topics in human-computer
interaction that pertain to ITSs. In view of the complexity of these topics and the rapidity with which
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developments in both fields are occurring, it should not be surprising that the list is long. Given the
current state of knowledge about these topics, however, progress in certain areas looks especially
promising for [TSs.

Making Domain Semantics Visible

Solving this problem is critical to the success of first-person interface techniques. An especially
important part of this problem is to find ways to identify appropriate mental models for complex
domains, and convey these models to the users of the systems. Similarly, designers need some basis for
choosing between alternative models, for choosing the proper level of abstraction for a successful model,
and for implementing a graphic representation of a model.

Another aspect of this problem is understanding the various stages of users’ conceptualizations of
systems and domains. The ways in which people conceptualize a problem gradually change (cf. Chi,
Feltovich, & Glaser, 1981), and interface designers need to understand these stages of conceptualization,
how the movement from one stage to another takes place, and how these changes would constrain
interface design and development. Finally, as these changes take place, the relative importance of
cognitive and physical fidelity needs to be understood.

Dealing with domain semantics is hard; it requires much work that is specific to a particular
domain, and that is not reusable in other areas. An important direction this work could take is to follow
on the PUPS and Rite Size Tutor projects and consider whether some abstract system can be defined
that would be capable of representing the semantics of many different domains, generalizing as much of
this semantic information as possible. Such a system would ease the implementation of ITSs and would
have value for other areas of arti{icial intelligence as weli.

The Dichotomy Between First-Person and Second-Person Interfaces

This distinction appears to be a valuable way to think of interfaces, but a better understanding
of these classes of interfaces is needed. For instance, the limitations of first-person interfaces are not well
understood. We need a better understanding of when they are most appropriate from a tutorial or
interaction perspective, and how far they can be pushed before the illusion of direct interaction or
cooperation with an agent begins to break down. We also need to address the problem of understanding
the coverage of the domain offered by a particular interface. As noted in the discussion of natural
language interfaces, serious problems arise when users misunderstand the limitations of the application
programs behind the interface. This calls for identifying interface techniques that communicate the
capabilities of these application programs as clearly as possible. Finally, we need to understand how to
integrate first- and second-person interface styles, so that the the power and flexibility of this integration
c. be maximized. For instance, it should he possible for a student to ask a question about a graphical
object in the interface’s display by combining a typed or perhaps spoken statement to the tutor with a
mouse click or some similar manipulation of that object. Such possibilities imply a whole class of
research projects on how to combine multiple interface technologies in fruitful, synergistic ways.

Interface Design Aids

Except in a few limited areas, there is not a strong scientific component to the design of
interfaces. This lack of knowledge points to work in two basic areas. First, more knowledge about
interface design is needed. The research cited earlier has primarily explored screen layout and
information prescntation; other guidelines exist regarding color, fonts, and window proportions (Marcus,
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1985) that could similarly be codified. There has been some study of the command structure of
interfaces, with the goal of predicting the case of use and learnability of these interfaces (Polson &
Kieras, 1985, Payne & Green, 1986); this work should continue and move into the more complex,
semantic aspects ol domains and interfaces.

Second, to fill in the gaps in our knowledge about interface design, powerful interface
prototyping tools are also needed. These tools would allow designers to experiment with different designs
and rapidly converge on a good design. These tools should increase the level of support for interface
designers so that they can work directly with the objects that will appear on the screen and the behaviors
that will be associated with them. Designers must be freed [rom worrying about plotting points and
tracking mouse positions.

Knowledge Acquisition Environments

Help is also needed in the design of the knowledge component of ITSs. Tools supporting this
design process need to go beyond the currently-available expert system shells, and address the link
between interface development and knowledge acquisition. In particular, it would be uscful to learn how
much knowledge about the use of an interface and about the domain it controls can be derived from a
representation of the interface itself, and how much help can be offered toward filling in the knowledge
that cannot be derived from these representations. The problem of domain specificity is again relevant
here: one would like a development environment that both addresses the knowledge acquisition problem
and also supports the development of interfaces of many different styles and for many different domains.
However, this may not be feasible: it may instead be necessary to build many different interface toolkits,
each of which has been specialized to reflect the interface and knowledge requirements of a particular
domain.

Cognitive Limitations

An important step in building better interfaces is knowing more about basic cognitive processes
and the limitations inherent in these processes. For instance, if we learn more about how working
memory is managed, we can begin to design interface techniques that offer minimal interference with
working memory and that serve as useful external memory systems. Similarly, attention and salience are
also important problems for interface design because of the problems people have in organizing their
displays and the information on them so that they can later find what they need. This problem is
somewhat manageable now, but only because the size and resolution of current displays limit the amount
of information a display can contain. As displays become larger, it will be especially important to
understand how large amounts of information can be organized to insure the clarity of the information,
and to find ways for the application program to alert the user to changes on some part of the screen.

Intelligent Interface Capabilities

Two areas of research are especially important here. First, there is a practical need for better
intelligent system development environments. Interface designers are rarely expert in the development of
knowledge-based systems, and toolkits to aid the development of knowledge components of interfaces and
tutoring systems are badly needed. Second, basic research on the role of intelligence in interfaces is
neceded. How can an intelligent system make its powers and limitations clear to its users? Systems like
NLMenu offer one solution for one class of ;roblems, but the more general question remains. Until
better answers for these questions exist, much of the effort devoted to putting intelligence into interfaces
and ITSs may go unused.
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Educational and Psychological Utility of Interface Technologies

What is the relative value of graphics versus text and voice versus typing? What is the utility of
color, animation, and other high-realism graphic techniques?  The evaluation of these specific
technologies will be difficult. One can often be shown to be better than another, but it is hard to
determine whether this advantage is inherent in that technology, or if it is the result of better
implementation or of the specific domain or task that was chosen for the evaluation process.
Nevertheless, a better understanding of the real values of alternative technologies is badly needed. It
brings us back to the real problem surrounding the development of interfaces for ITSs: that of making
the application domain clear and easily understood. Ultimately, this is the real role of all these
techniques: to serve the user and improve the total educational experience.
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DISCUSSION

The Role of Human-Computer Interaction
in Intelligent Tutoring Systems

Kathleen M. Swigger
Associate Professor of Computcr Science
North Texas State University
Dcnton, Texas

I will briefly go over what Miller said and try to highlight the important
points. Then I will try to elaborate on some interface issues and offer some further
suggcestions in this area.

First, and most important, Miller stated that we should all remember that
intelligent tutoring systems are really communication systems (see Figure 6.7). This
one fcature probably makes building interfaces for intelligent tutoring systems much

1. ITS is communication

2. A system needs:
--Conceptual model of itself
--Internal-external task mapping
--Style of Interface
*First person vs. third person

3. Interface semantics
--Constraints in the interface
--Reason and explain constraints
--Task constraints
--User constraints
--Instructional constraints
--Physical constraints
--Tutorial constraints
--Implementation constraints

4. Research questions
--Make domain semantics visible
--First/third-person dichotomy
--Educational/psychology utility of interface
--Design aids
--Knowledge acquisition tools

Figure 6.7. Summary of Miller’s Main Points.
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different than building interfaces for other types of systems. Next, Miller said that a
good ITS interface needs a conceptual model of itsclf, some internal-external mapping
of the task, and a specific style. Miller claborated on the different interfacc styles and
categorized them into first- and third-person interfaccs. These two major distinctions
provide a nice classification systcm that we can all remember. Classification systems
arc always nice to have.

Miller also talked about interface semantics and why this is onc of the most
important things that he considers when constructing an interface. In order to
determince the appropriate interface, you must look at the context of the problem and
definc its constraints. Once the constraints have been determined, then you can look
at how the interface can satisfy these constraints. You should, in short, usc an expert-
building approach when designing the human-computer interface.

Some of the research issues that Miller proposcd for the Branch were: make
domain semantics visible, cxplore the dichotomy between first and third person,
investigate the education and psychological utility of interfacc tcchnologics, and [ook
at available design aids and knowledge acquisition tools.

Having stated all of these points, I think I can now make the observation that we
simply do not have much real science going on in the area of human-computer interfaces. 1
think it’s probably safe to admit that "technology has overtaken our potential for utilizing it
effectively.” We simply have too many computer toys out there to pretend that we are
making an impact on their development. As a matter of fact, Miller failed to mention the
newest computer toy, CD ROM, which allows you to store both music and video on a small
disk that can be played back through your computer. We are being overwhelmed by the
marketplace and are being forced to "respond to" rather than direct the interface questions.
A few stories should help illustrate this point even more clearly.

Recently, I was part of a development team that built an expert system that (a)
classifies noxious weeds that grow in ponds and then (b) determines which chemical
should be used to climinate the weced. Initially, we had 15-20 rules in the system to
help the client identify the specific weed. A new technology came on the market that
allowed us to digitize a picture of the wecd and storc this image in a databasc that
could then be accessed by the expert system. It was obvious tr us that it was much
simpler to show a picture of various weeds and have the client pick out the
appropriate picture than to have him or her select appropriate words describing the
weed. Using thc new system, we climinated 15 rules and made everyonc much happier.

The second story concerns a mouse and my 7-yecar-old child. Recently, 1
bought a mouse and installed it on my home computer system. My 7-ycar-old was
curious about the mouse, and so I showed him how to use it as a pointing device. He
looked at thc mouse for a very long time, squinted his eyes, and said, "But Mommy,
why do not they make it so you can just usc your finger? Seven-ycar-olds can really
put things into perspective.

How do these two stories rclate to research on human-computer interfaces? 1
rcpeat, we arc probably unable to address all the design issues for a rapidly emerging




technology. So what do we do in the arca of research if the technology is so far
ahead of us? Where do we go? Do we do anything at all? 1 supposc we could take
the conventional approach and look at the individual lessons in an intclligent tutoring
system, look at all the different interfaces that are available, think of all the variables
that might be interesting, and then test which interface can be used to tecach which
lesson for each variable. I think we would soon discover that this conventional
methodology of parameter plotting is simply not a viable option. You end up trying
to assess pcrformances at every possible combination of points in this N-dimensional
hyperspace. A more rcalistic view is to admit that there is a class of interfaces that
are appropriate for any particular problem. The selection process is not really a
sclection of one, but rather from many. I scem to remember from my Introduction to
Design course that there were a number of authors who described various taxonomic
systems for media selection as task-media matrices. In most cases, the cells in the
matrices wcre all filled, with the cxception of onc or two boxes per row. In other
words, characterizing what will NOT work cffectively may in some instances be
rather easicr than specifying what will. One factor is the growing appreciation that in
many information design contexts there is a broad bandwidth of acceptable solutions.
I think the samec thing is truc of interface sclection—-the occurrence of cognitive
mappings among which the instructional designer is free to choose.

It is also important to remember, as Miller stated, the context of the problem.
The context for the interface problem represented by the participants at this forum is
the training world of the US. Air Force. If we look around, I think we can say that
the majority of the people at this forum are concerned with the decvelopment of
instructional systems. These instructional systcms do two things — they teach and they
train. Evcn more specifically, these instructional systems are designed to teach or
train the adult learner in an aduit learning environment. Furthermore, the teaching,
as defined in an academic scnse, is actually fairly minimal in thesc systems. The
majority of the instructional systems for the Air Force arc designed to train.

In response to the training mission of the Air Force and the objectives of this
forum, we nced to formulate rescarch questions that have gencralizable answers. At
the moment, the ITS world seems to be locked into a preparadigm statc. Evidence for
this statemcnt is the recurring theme, cxpressed by most of our speakers, that the
major rescarch objective for intelligent tutoring systems is to design and implement
morc systems. In a preparadigm state, we are forced to creatc without design
principles or theory. However, I think it may be time to formulate some questions
that will allow us to determine whether the systems we build arc effective and
whcther they contribute to the field of artificial intelligence and education.

Where do we begin? Pcrhaps a first step for rescarchers interested in the
human-computer interface problem is to examine the individual tasks involved in the
instructional and tra'1ing process. That is, we might want to break down the
cognitive task involved in intcraction with the instructional computcr into discrete
steps. An cxample of this typc of analysis was done by Card, Moran, and Newell
(1983) i1 their study of diffcrent text cditors. They analyzed the various tasks within
the text-cditing process, built a model describing these tasks, and then used this model
to evaluate several text editors. The modcl helped the authors determine whether the
specific tasks within the text-cditing process correspond to preestablished norms.
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Evaluation of human-computer interfaces for intelligent tutoring systems
might be done in a similar manner. First, we might propose a minimal intelligent
tutoring system that consists of reading a question and answering it. These two tasks
can be broken down into a number of subtasks such as understanding the question,
implementing the appropriate answering procedure, interpreting the fecdback, and
accepting conscquences. Once the minimal system is broken down into its individual
components, you can test the model and use it to evaluate the effectiveness of the
instructional interface. For example, if the interface interfcres with the student’s
ability to answer a question, then the student will spend more time trying to perform
this particular subtask. Similarly, if the student is having difficulty understanding thc
fcedback, then he or she will spend an unusual amc int of tinic (rying to do this
subtask. This type of study should help answer quecstions that can then be used to
formulate thcories about the instructional process.

Subgoals Coqnitive Processes
Facts:
e finding what are the facts e Attention, perception,

reading, inference

e memorizing the facls s memory strategies

e retrieving facts e memory, recall, recognition

e retrigving facts from data e perception, search, problem
base solving

Concepts:

e finding constitutents of * attention 'Jercgption.
concepts reading

e relating concepts to prior e memory
knowledge

e using conceplts generatively ® inference, decision making

Procedures:

e noting when procedures apply e perception, reading

¢ placekeeping during sequence e memory, perception

e monitoring the outcoming e aftention, inference
steps

Figure 68. Instructional Taxonomy (Wright, 1981).

A second investigation might explore general instructional objectives and how
they relate to the human-computer interface. Figure 68 shows an instructional taxon-
omy that was provided by Patricia Wright (1981) and appeared as a list of objcctives
for traditional CAI. Howecver, I think the list works equally as well for ITS. Once
these objectives have becn specificd, we can look at the existing interfacc to sce how
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it can promote or increase this typc of bechavior. For example, how can the interface
help the students find facts? 1 rccently developed an expert system that is used at the
JFK Airport to help workers assign incoming planes to appropriate gates. The
individuals who perform this task work in a room full of chaos. One of our problems
was to crcate an interfacc that would jog our user's memory and attract his or her
attention to key clements displayed on the screen. The end result was to provide a job
aid that would help a worker perform more cfficiently and cffectively.

Another side to the memory question is, how can the interface prevent
students from forgetting? In my cxperience as a teacher of computer science, I am
oftcn confronted with students who continually report the same bug. Why do
students "forget” that they made the same mistake the previous day? Does the context
of the problem change? Do thcy forget why thcy made the mistake? How can our
interfaces prevent students from forgetting?

Retrieving facts from memory is another subgoal under the Facts label (see
Figure 68). What types of interfaces help students retricve facts? We know, for
example, that menus help users recall facts and that natural language interfaces force
uscrs to rcconstruct facts. We also know from the reading comprehension literature
that underlining can affect a person’s ability to retricve facts. What other techniques
can be used to help people retricve facts?

Many of these issues may go away as the Air Force continues to explore the
embcedded training world. Embedded training systems allow designers to use the
wcapon, vehicle, etc, itself as a training delivery system. This has obvious advantages.
Among them is the fact that it allows you to reducc the amount of time that it takes
to produce the simulator. If we can rcduce this effort, then it will allow us to
concentratc more on questions of cognitive overload, diagnosis of student errors, etc.

Returning to Figure 68, we find that under the proccdures level are listed such
tasks as noting when procedures apply, place-keeping during the sequence, and moni-
toring the outcome of steps taken. All of these objectives can be measured by
providing students with a simulation of the task. The interface issues that are
applicable to this area become questions such as how effective is the simulation? How
does the simulator map into the task? Does the graph display address memory issues?
How can you create symbolic representations of the task?

If we can concentrate on this list of instructiona! objectives and look at how
each of these objectives maps onto thc cognitive tasks required in the minimal
instructional system, then we can formulate the appropriate questions that we should
be asking of ITS. Again, I would venture to say that at least 50 percent of this
audience is engaged in instructional design issues. To tell you that the major research
issue in ITS is to create more systems is not sufficient. To tell you that you must
build robust instructional systems that have effective interfaces is again not sufficient.
I do not think that any of us intentionally build bad systems. I think all of us want
guidclines, directions, and information about the correct research issucs in intelligent
tutoring systems,

Finally, I would like to propose some additional research areas that

complement some of the items that I have just mentioned. Because of the nature of
the interface that we are concerned with—ie, an interface for an intelligent tutoring
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system—there are a number of specific research issues that can be examined. An
Intelligent Tutoring System is different from other types of systems because it is
concerned with teaching. Contained within thcse systems is knowledge about the
domain and knowledge about the student. A teaching system also contains knowledge
about the objectives of a lesson and how these objectives can be achicved. A major
way that we achieve these objectives is by asking questions and then analyzing thc
answers to thesc questions (our minimal system) As a result, one of the major
research issues for people interested in instructional systems should be how can the
interface guide the questioning of the student and the direction of the instruction?
Unfortunately, very little has been done in the area of tcachers’ questions. We simply
do not know what types of questions tend to stimulate students’ inquiry skills or what
types of questions direct students’ conversations. Questions tend to dominate the
classroom environment, yet we know very little about how to frame questions to
affect this environment.

Even less is known about students’ questioning behavior and how an interface
can provide an environment that will promote students’ questioning behavior.
Students tend to ask very few questions in a classroom. Can we do bctter with
computers? Can we give students the tools that will allow them to explorc domains
and not be afraid to pursue goals?

A second area of research should be directed toward the examination of appro-
priate sequencing techniques. How do menus, natural language interfaces, etc, help
focus the student’s attention on the goals that need to be accomplished? There are a
wide variety of interfaces that seem to direct students’ attention to appropriatc areas
of the screen. All of these may affect the student’s performance--or they may not.

The more ambitious the range of instructional sequences being catered for, the
more complex the instructional system. This is one of the more positive aspects of
ITS. One of the major differences between ITS and CAI is that ITS allows the
dcsigner to think about processing large chunks of information about students.
Armed with powerful AI tools, we are able to achieve cognitively compatible
programming techniques. Rather than designing S-R -like systems, instructional
designers can now focus on processing students’ strategies (both good and bad). This
is the process that Miller referred to as designing for a semantic environment.

Examples of how the interface can affect the sequencing of instruction were
given by Beverly Woolf in her explanation of her system. Students were presented
with a series of pipes, dials, etc, in which they observed information and reacted to
prompts. The way the dials were positioned on the screen and the ability of the
student to manipulate specific dials affccted both the instructional proccss and the
internal knowledge representation in the system.

Knowing how the sequence of instruction relates to other types of tools is
another powerful idea. In a recent demonstration, one of my students built an ITS to
teach people how to use IBM DOS. He aimed his instruction at a group of bankers in
a business environment. One of the things that he noticed with this particular group
of students was that they did not use advanced commands because they were afraid of
the consequences of their actions. As a result, he built a small simulator that would
allow them to try out the commands before they used them on the real system. This
had a major impact on how the uscrs intcracted with both DOS and the tutor for
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DOS. They used the tutor much less, played with commands much more, and used
much more sophisticated command stratcgics.

The construction of intelligent tutoring systems raises a number of issues for
rescarchers that have no countcrparts in other ficlds. It allows designers to explore
the many different communication possibilities such as graphics and powcerful
proccssors, but it also imposcs limitations such as available screcn space and the
rcquirement of simpler lecarncr control facilitics. As the technology increases, we are
forccd to cxpand our design tools. Unfortunately, we arc hindcred by the fact that we
know rclatively little about the tcaching process, the nature of the learning process,
and individual differences among students. In rcsponse to such challenges, human
factors rescarchers now ncced to sharpen their conceptual tools and create morc
powerful links between their rescarch and its cducational application.
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CHAPTER 7

PRAGMATIC CONSIDERATIONS IN RESEARCH, DEVELOPMENT, AND
IMPLEMENTATION OF INTELLIGENT TUTORING SYSTEMS*

William B. Johnson
Senior Scicatist
Scarch Technology, Inc.

I. INTRODUCTION

The previous chapters in this volumc have claborated on various aspects of intclligent tutoring systems
(ITSs). Topics discussed thus far include cxpert and student modules, design of curriculum, hardware interfaces,
and programming cnvironments. Thc substantive issues and state of the art have been discussed for each of
thesc topics. As the basic rescarch issucs arc addressed and the applied technical and engincering issues evolve
toward solution, ITSs have the potential of affccting training in business, industry, schools, and the military.
However, good scicnce and technology do not in thecmsclves guarantee that ITSs will be successfully integrated
into training cnvironments. There are many people-oriented and organizational issues that interact with science
and tcchnology. These issues affect whether innovations like ITSs result in successful applications.

ITSs potentially have a wide range of applications across a multitude of disciplines and subject areas.
Training related to tactical planning, business decision making, and interpersonal communications are only a few
cxamples of candidates for 1TSs. This chapter focuscs on technical training for system maintaincrs and
opcrators. The pragmatic issues rclated to development and implementation of ITSs are also considered. This
chapter complements the previous chapters with a straightlorward and practical discussion of the personnel who
will develop, implement, and evaluate ITSs.

To cxaminc the real world issues of ITSs, this chapter first considers the users and developers of ITSs by
answering thc qucstion, who are ITSs for? Sccond, the chapter addresses the question of what each of thesc
uscrs can expect from ITSs. The expectations scction considers not only the formal environments of school and
training but also othcr applications of 1TSs. After discussing what ITS can do and for whom, the chapter takes
up thc next question, how ITSs can be clfcctively developed and implemented. Implementation issues
discusscd include not only scicntific issues but also organizational considerations and constraints.

*This chaptcr is complemcntcd by Johnson, W. B. (1987a). Dcveloping expert systcm knowledge bascs
in tcchnical training cavironments. In J. Psokta, D. Masscy, & S. Mutter (Eds.), Intclligent tutoring systems:
Lessons lcarncd. Hillsdale, NJ: Lawrence Erlbaum Associates.
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Expcricnce with ITS Dcvelopment

This chaptcr is based on over a decade of experience with the development, implementation, and
cvaluation of computer-based training systems (Johnson, 1987a, 1987b), including Framework for Aiding thc
Understanding of Logical Troubleshooting (FAULT) and Troubleshooting by Application of Structural
Knowledge (TASK). During that 10-year period, the developments were in such domains as automotive and
aviation mechanics, communication electronics, and nuclear safcty systems. These research cfforts, conducted
by W. B. Johnson, W. B. Rouse, and R. M. Hunt, involved cxtcnsive intcractions with curriculum developers and
instructors, students, and managers in the Army, Navy, clectric utility industry, and post sccondary technical
training environments. The work ran the gamut (rom basic research on human problem solving (Johnson, 1981;
Rouse & Hunt, 1984) to training applications in an opcrational environment (Maddox, Johnson, & Frey, 1986).
The work involved transfer of training evaluations and carly experimentation with intelligent computer-based
instruction (Johnson, 1981, 1987b). Thesc varicd cxperiences with computer-based instruction projects permit
this author to discuss the pragmatic issues associated with the development and implementation of ITSs.

Researchers and developers of ITSs must consider a host of practical issues. These issues include:
1. obtaining funding for research and development,
2. obtaining support across multiple organizational levels,
3. winning the cooperation of subject-matter experts,
4. conceptualizing and developing usable software within time and budget constraints,
5. integrating instructional software into the existing curriculum,
6. evaluating software in the operational training environment.

An incident that exemplifics thesc real issues is an experience that this author had early in a project on
instructional software dcvelopment for the military. During the kickoff mecting the commanding officer, a two-
star general, commented that computer-based instruction was "high priority” for his post and (hat we could
cxpect full cooperation from him. On the same day, the subjcct-matter experts and instructors said that they
were opposcd to computer-bascd instruction and were reluctant to cooperate. The cooperation of the experts
was far more critical than the cnthusiasm of the general. Although the gencral opened the door, the cxperts and
instructors were the key to the development of cffective instructional softwarc. Therefore, as that project began,
it was an organizational issuc, rathcr than onc of scicnce or technology, that threatened the development effort.

II. EXISTING INTELLIGENT SYSTEMS FOR TRAINING

Artificial intclligence research has been around for over 20 years (Newell, Shaw, & Simon, 1960) and
has becn followed morc rccently by research with expert systems. The applications of the technology have
influcnced such ficlds as medicinc (c.g., INTERNIST/CADUCEUS, MYCIN, PUFF), chemistry (c.g.,
DENDRAL), biology (MOLGEN), geology (PROSPECTOR, DRILLING ADVISOR), communications
diagnosis (ACE), and locomotive repair (DELTA/CATSI). Thesc examples of systems in development and
cvaluation were designcd not primarily as instructional or intclligent tutoring systems  but as job decision aids
that try to bring an cxpert to any job site, laboratory, or clinic.




As Andcrson explains in this volume, whea uscrs attempted to validatc these cxpert systems, they
wanted to know how the system made decisions. Users who could not obtain and undcrstand the expert system’s
path to a dccision had difficulty accepting the decision. Although cxpert systems do typically have an exploration
facility, this [caturc is closcly ticd to the knowledge basc and the way it has captured cxpertise. Often, as was the
casc with MYCIN, cxpertisc was capturcd in a highly refincd, compiled state. The knowledge was immediately
mcaningful Lo cxperts but obscurc or mcaningless to novices. Because the structure of the knowledge base could
not be casily demonstrated to the user, it was not suitable as a basis for training (Clancey, 1982).

Decvelopers who attempted to improve the explanation of the system’s expert decisions began to
undcrstand that morc than an expert modcl was nceded. It became clear that knowledge had to be represented
in an organized way that made explicit the important rclations and principles of the content discipline. The
system also needed to understand the user (which required a student modcl) and to know when and how to offcr
explanation (which required an instructor-curriculum modcl). Researchers from instructional disciplines became
involved with the specification of additional system charactcristics for ITSs.

Although there arc a number of ncw ITSs in devclopment today, for example, IMTS, the Navy's
Intclligent Maintenance Training System (Towne, 1987), the expert systems that have been developed to provide
instruction arc relatively few. Further, many of the new systems are proprictary or simply have not yet becn
extensively described in the available literature. A table of the systems discussed in this volume is given in
Appendix A. For thc most part, the systems were developed as laboratory tools to test various hypotheses related
to specific aspects of learning via ITSs. Thesc early research cfforts were constrained by the limits of existing
hardware and software. Sincc then computational capability has dramatically incrcascd, and the trend is
continuing. The impact of thesc early cfforts can be seen in the software and hardware that exist today (Burton,
this volume).

Limitations of Laboratory ITSs

ITS research conducted in the controlled confines of the laboratory is basic research that paves the way
for the development efforts ultimately carricd out in the real world. While one laboratory project concentrates
solcly on student modcling, another projcct may be devoted to understanding expert diagnostic performance.
Other projects may be focusing on processor and interface issues. Ultimately, the fragmented portions of basic
rescarch and development must be integratcd and tested in real-world applications.

Developmental expert systems are generally not commerecially feasible as real-world applications. The
system designers, knowledge engincers, and usually the programmers, have advanced degrees and are the
brightest professionals in their ficlds. The content experts arc also an clite group chosen for their extensive
experience in the tcchnical domain. The resulting program usually has limited application. It runs on a hybrid
machine that is not likely to bc commonly found in actual instructional environments. Further, a glance at the
bottom linc also shows that the high cost of development precludes replicating the effort for a real-world
application.

These remarks may sound critical of laboratory rescarch on ITSs, but they are not meant to be. Early
dcvelopment cfforts must take place in the rescarch centers of the universitics, industry, and the military. But
these efforts have becn underway since the sixtics, and the time has come to concentrate more effort on
developing real applications for ITSs. The findings of basic rescarch should be tcsted against the constraints and
unpredictable problems of rcal training cnvironments. These projects can begin with laboratory prototypes of
ITSs; but they must be developed, implemented, and (ested in operational training centers. The following
scctions of this chapter provide guidance for procceding with real applications.
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1II. DESIGNING THE SYSTEM TO MEET USER NEEDS

The term tutoring implies that lcarning will take place. It follows that the user of an ITS is the studcnt
in a classroom; and the studert in a classroom is definitely the principal ITS user. However, uscrs also include
instructors, curriculum developers, designers, job incumbcents, and managcers. These groups and their special
nceds must be considercd as ITS rescarch and development continucs.,

When a system is designed, the needs of the various users must be at the forefront of the designer’s
attention. In reality, these nceds are not necessarily aligned. For example, if the ITS knowledge basc is
designed to be very casy for the instructor or content cxpert Lo develop, the result may be a training system that
is not robust cnough {o meet studcnts’ nceds or expectations. If the ITS is made to run on an inexpensive, off-
the-shelf personal computer, the resulting system may be too slow to meet minimum requircments for multitask
processing or response lime. On the other hand, when the requircments for the system are a very robust
response, sophisticatcd graphics, fast response, and an interactive knowledge base editor for the expert, the ITS
may be so expensive that development is not practical or even possible with present technology. Thereflore,
successful development and implementation of ITSs depend on setting priorities among uscrs’ nceds and
integrating their requircments. This section considcrs the requirements of cach group of uscrs.

ITSs for Adult Learncrs

There is likely to be extensive variance within the user population of any ITS. This is particularly true
for adult learners in industry and in technical training situations in the military. ITSs must be capable of
addressing these conllicting characteristics. For example, some adult lcarners are impatient with too much
review; others are upset with too little review. Some like the "nicc to know" facts; others want only the pertinent
information. Some are embarrassed to ask qucstions, and others waste time by asking too many questions.
Adults are often outspoken about the timc spent reviewing or the time spent teaching theory rather than
practice. For example, adults in technical training will question the value of studying an equation for calculating
engine thrust when the prime objcctive is to lcarn to troubleshoot the fucl control system of a particular jct
engine. It is incumbent upon ITS developers to explain to learncrs why something must be lcarned.

In a classroom of adult learners, the same people incvitably ask all the questions and thereby place
wnreasonable demands on both the group’s and the instructor’s time and resources. A well-designed ITS should
be able to cater to the inquisitive lcarner and permit others to learn at a pace more in tunc with the'~ cognitive
and learning style.

Adult learners have additional characlcristics that ITS designers should take into account. Adult
learners want to perccive immediate transfer of training to the demands of their job. They want rcasonable
control over the instruction delivercd. They are motivated to learn but are occasionally precoccupied with other
problems. Furthermore, they lcarn best by intcgrating past expericnce and new knowledge with practice
problem solving.

The adult learncr in the military may be a new airman learning basic clectronic principles or a senior
officer practicing decision making in a war simulation. In cither casc, the training system should be able to adapt
to the student first, then monitor and modcl the student’s performance, and finally provide fecdback and
correction accordingly.
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Design Needs for the Technical Training Environment

Andcrson (this volume) classifics knowledge that can be tutored into three categories: procedural,
declarative, and qualitative or causal. For technical training, which usually includes troubleshooting, the ITS
must providc tutoring in all of the catcgorics of knowlcdge. It must do morc than thc mundane varicty of
computer-bascd instruction that mercly provides drill and practice or limitcd tutorial with simplistic branching.

In addition to tutoring all these catcgories of knowledge, training for a technical system should permit
guided exploratory lcarning. The student should be able to explorc how the system works overall and how
various componcnts opcrate or fail to opcratc. The ITS should permit the user to learn the procedures for
opcrating the system. On a communication system, for example, thc student should be able to manipulate
controls and obscrve the effects. That is, the student should be able to try out the systcm and understand the
clfcct of improper as well as proper operation. In the casc of war games, the learncr should be permitted to try
the “what il* moves and should receive an opcrationally oricnted cxplanation of how the outcome was derived.
As with the technical simulation, such capabilitics will cnable the Icarner to understand the consequences of an
action. Finally, the ITS should be designed to provide the student with the opportunity to troubleshoot the
system, and it should providc tutoring as appropriate.

ITSs must permit errors, but they must also provide appropriate feedback based on the kind of actions
the lcarner chooscs. Morcover, this feedback must be provided at the right time. Constant intrusive feedback
and advice may be detrimental to instruction (Munro, Fchling, & Towne, 1985). Feedback that is unclear or too
narrow in focus may also adversely affect Icarning (Rouse, Rouse, & Pellegrino, 1980) .

The type of feedback that an ITS provides must also be carefully considered. In addition to correcting
crrors and explaining why an action was an error, ITSs should allow the user to ask, "How am I doing?" The
answer can be bascd on a comparison of the student with cither other students, a human expert, an information-
theoretic model, predetermined criteria, or mercly a calculated total of time, actions, and errors. A performance
summary that integrates the student’s monthly, weckly, or daily progress could also be made available.

Effective integration of ITSs also depends on the quality of the interface between the training device and
thc users, including instructors and students. The systcm must be designed so that it is easy to learn and
compatiblc vith uscrs’ expectations, abilitics, and limitations. The issucs of learncr friendliness, or cognitive
ergonomics, arc a substantive topic in themselves and are addressed by Miller (this volume).

Design Considerations for Job Site Training

Learning is not limited to the classroom or to the tcchnical training laboratories of industry or the
n.. {ary. In fact, more one-on-onc tutoring takes place on the job than in the schools. Therefore, as ITS
research continucs, considerable attention should be focused on the job site.

ITSs arc likely to find their way into the job site as intelligent aids for operations and maintenance
personncl. These job aids have taken such namcs as Intclligent Maintenance Advisors (Richardson & Jackson,
1986) and Maintaincr’s Associates (National Research Council, 1986, p. 74). The Intcgrated Maintenance
Information Systcm (IMIS), a U.S. Air Force project, has the potential of providing intclligent job aiding and,
cventually, intelligent tutoring. The U.S. Army counterpart to IMIS is called PEAM, the Pcrsonalized
Elcctronic Aid for Maintenance.

In the operations area, the Pilot’s Associate program, sponsored by the Defense Advanced Research

Projccts Agency (DARPA), is a notable cxample of job aiding in the cockpit. A project of the Air Force
Armstrong Acrospacc Medical Rescarch Laboratory, called the Designer’s Associate, is using expert system
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technology to provide scientific, technical, and regulatory advice to personnel involved in the specification,
design, and acquisition of aircrew training systems. The Designer’s Associate project has an additional goal of
providing the user with available information in thc arca of human performance. Othcr cxpert systems
applications in maintenance are discusscd by Richardson, Maxion, and Polson (1985).

Intclligent job aids, such as stand alone dcvices or those embedded in prime systems, have the potential
to provide system instruction, procedural advice on diagnosis and repair, and simulation-bascd training in the
ficld. As ITS research proceeds, it is imperative that training rescarchers work closcly with job-aiding and
logistics researchers. If intclligent job aids and ITSs arc devcloped independently, it is likcly that functions will
be lost or duplicated when the two systems arc integrated.

The integration of training and job aiding in one intelligent device has enormous potential. It could
scrve to redefine the concept of apprenticeship training. At present, the computer is by no means equal to a
human master. However, a well-designed knowledge base and efficient human-computer interface could
provide the novice technician with an ever-present, paticnt, and intelligent mentor. The intclligent maintenance
advisor could adapt to the compctence level of the uscr and possibly cven enhance the knowledge basc from uscr
input.

Meeting the Nceds of the Instructor and the Subject-Matter Expert

The development of ITSs requires major contributions from the instructors who provide expertise in the
subject matter and, often, in tcchnical pcdagogy. The importance and role of technical instructors is discusscd
elsewhcre (Johnson, 1987a).

If ITSs are to be effective in technical training environments, the instructors will also have to take a
Icadership role in devclopment. To make their participation possible, tools must be developed to permit
technical experts to create a knowledge base without the help of knowledge engineers or artificial intelligence
experts. The dzvelopment of such tools was one of the goals of the Steamer project (Hollan, Hutchins, &
Weitzman, 1984) and continucs to be a primary goal of Intclligent Maintenance Trainer System (Towne, 1987,
Burton, this volume). Another project that is developing tools for ITSs is Knowledge Acquisition/Intelligent
Authoring Aides (KA/IAA). This tri-service project will develop ITS authoring topls and demonstration
systems i the domains of satellite control, explosive ordnance disposal, and electronic troubleshooting. A
primary goal of this project is to develop tools that subject-matter experts who know little about computers can
use to develop ITSs.

The development and field use of ITS authoring tools should be a high priority over the ncxt 5 years.
An ITS authoring system should be used by content experts and instructors, working first with artificial
intelligence researchcrs and then by themselves. Practical applications will permit researchers to identify
problems and new development needs. These ficld tests of cxisting technology will permit ITS authoring zystems
to evolve along with the basic rescarch on ITSs in the laboratory.

IV. ISSUES IN IMPLEMENTING ITS

Thus far, this chapter has briefly mentioned a few examples of existing ITSs and attempted to identify
the design requirements for meecting the nceds and expectations of ITS users. It has also described
characteristics of ITSs in the classroom and on the job. This final section will address pragmatic issues rclated to
the implementation of ITSs.
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Identifying Candidates for 1TS Application

The identification of likely candidates for the application of ITSs may look like the search for a
"problem to the solution (the ITS).” That is not the case. Advances in computer technology, in both hardware
and software, combincd with successful cfforts to understand how humans learn, have put researchers and
training system dcvelopers in a position to improve instruction with tcchnology. Although ITSs are still in their
infancy, the timc has come to make the transition from the laboratory to the ficld. It is time to use existing
authoring systcms and various commercial expert system shells to attempt to build ITSs and try them out.

Candidate application arcas for ITSs shouid be evaluated according to several constraints, or pragmatic
considcrations, which arc discusscd in this section. These constraints arc formidable, but they can b= ceatrolled
if handlcd correctly. The first considcration is that ITSs will require programming tools and hardwarc that may
or may not cxist when the project begins. Howcver, this problem may not be insurmountable.

The sccond consideration is that the programming environments and hardware capabilities are in a
constant state of flux. The particular programming language with which the development of an ITS begins is
likcly to undergo numcrous modifications before the project delivers a product.  The hardware is continually
changing and offcring improvements in mcmory, storage, and processing speed. Although such changes often
causc a minor rewritc of softwarc, they arc also likcly to increase uscr capability, thus raising the potential 1TS
payoffs.

A third consideration is that for now and the foresccable future, the development of ITSs is labor
intensive. It requires an cxtensive commitment of time from scicntists and engineers, computer programmers,
knowlcdge cngincers, and subjcct-matter cxperts. A few ITS authoring environments arc emerging, but they will
nced constant support and improvement from the artificial intclligence experts in universities, industry, and
military laboratorics. Basic rescarch in cognitive science and various arcas of psychology and human engineering
will continuc to yicld ncw findings that must bc incorporated into the development of ITSs.  Applications-
oriented rescarchers now must take the existing technology into classrooms and training centers. Subject-matter
cxperts should participate in ITS development to evaluate the tools and products of those tools.

The fourth consideration is that thorough formative and summalive evaluation of ITSs will in itself
rcquire substantial resources.

Charactcristics of Candidate Application Arcas

The following characteristics describe arcas that are suitable for traditional computer-assisted
instruction. Thesc characteristics are particularly rclevant to ITSs candidate application areas for ITSs becausc
the level of resources necessary for their development is so high.

High flow ol students

Expensive real cquipment

Unavailable real cquipment

Unsalfe real cquipment

Critical skill and knowledge must be developed
Low availability of instructors

Training conducted at remote sites

High public visibility

Need for high volume of rccurrent training

RN A=

185




To maximize the effective use of resourccs and to achicve high cost effectivencss, ITSs should be uscd
for instructional arcas that have a high annual flow of studcnts. A high volumc of students will also be attained if
it is cxpected that the ITS will be uscd for many years. Principles of clectricity and electronics, turbine enginc
opcration and diagnosis, radar opcration and rcpair, satcllitc communications opcrations, and digital computcr
operation are only a fcw cxamplcs of courscs with a high flow of students. Many of these courscs traditionally
have been the focus of cducational technology rescarch and development.

High studcnt flow is not the only way of justifying thc cost of ITS development. Primc equipment is
oftcn not available or not practical as an instructional device other than for on-thc-job-training.  This
characteristic applies to such cxamples as training for nuclcar fucl-loading cquipment, nuclear power plant
opcrations, explosive ordnance disposal, and systcm troublcshooting on the launch processing system for the
space shuttle. These cxamplcs also represent tasks where performance must be both error-free and timely.

Technical training is often dclivered at numerous remote sites where there may be very few students.
Many remote sites do not have an instructor, training cquipment, or space designated for training. Also, the
dcmands of the job may not provide a schedulcd time for necessary training. In these cases, personnel may be
required to perform a critical task that they lcarned in a technical class 5 years before. A ship, submarine,
remote airbase, or orbiting space station arc examples of rcmote locations where needed training might best be
delivered with ITSs. The ITS does not have to be a stand-alonc, dedicated training device. Instructional
sofltware can be embedded in the prime system, which can then be used to provide training. This embeddcd
training can be as basic as using a word processor to teach a user to operate the word-processing system or as
complex as permitting a fighter pilot to fly simulated battles with training software embedded into the aircraft’s
avionics and weapon systems.

The unavailability of competent instructional personnel may also drive the decision to develop ITSs in a
given area. When this is the case, the expertise of the limited number of instructors can be incorporated into an
ITS.

A combination of characteristics such as high student flow, complex or unavailable prime systems, and a
low number of available instructors is a rcasonable justification for the devclopment and usc of an ITS. These
characteristics, however, do not neccssarily mcan that an ITS can be developed. Other questions must be asked
about the prime system and organizational resources to determine whether an ITS is [casible:

1. Does human expertisc exist in this area?
2. Can human cxperts communicate their knowledge?

3. Can the area for expertise be clearly defincd?

4. Do an ITS authoring system and approach fit the necds of the training
system?

5. Do human and computer resources exist to develop, implement,
evaluate, and support the ITS?

Given present ITS development tools and stratcgics, humans must supply a substantial amount of
subject~matter expcrtise. In thc future, particularly for technical training, it may be possible to cxtract this
expertise from computcr-aided design and manufacturing data.

The area of cxpertise must be clcarly dcfined. For example, an ITS cannot be expectcd to train a person

to be an all-round troubleshooter on all elcctronic cquipment. The work on the TASK and FAULT systems
showcd that training must be context-specific to maximize transfer to rcal equipment. An cxample of a clearly
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defined arca of development is the Intelligent Maintcnanee Traincr System project at Behavioral Technology
Laboratory. The first ITS system developed for that project deals with the rotary blade systcm of a specific Navy
helicopter. However, this specific knowledge basc is a by-product of a larger effort to develop generic tools for
ITS authoring.

The availability of ITS authoring tools should also bc considered. The complexity of writing an ITS
from the ground up in LISP, PROLOG, or another artificial intclligence language would far surpass the effort
using an ITS development system. But there arc two problems. First, ITS designers would be limited to the ITS
design constraints imposcd by the developers of the authoring system. Sccond, there are currently no such
complete ITS development packages available. The best compromisc at this time is an "open” system that would
provide authoring tools and also pcrmit the combined usc, as needed, of a programming language for artificial
intelligence.

Finally, the feasibility of an ITS also depends on the human and computer resources needed to develop,
implement, cvaluate, and maintain the system. The answer to this question has, of course, a very broad range
dcpending on how ambitious the project is. This author is familiar with cstimates of the time it takes to devclop
simulation-oricntcd, computer-based instruction that range from 200 to 400 hours of development for 1 hour of
instruction. Andcrson (this volume) estimatcs that development of an expert module may require “hundreds” of
devclopment hours per instructional hour. Building the student module and the instructor module are also
sizable tasks that may have ratios of 100 to 200 hours of dcvclopment per student hour. Using these rough
numbers and assuming that much of the work will be donc by senior level researchers means that the early
single-copy ITSs are likely to be extremcly expensive. The hope is, of coursc, that the rescarch needed for thesc
carly systcms will develop concepts and tools that will ultimatcly be widely used and eventually justify the initial
expenditures.

V. ITS APPLICATIONS AND RESEARCH

This volume has described the scientific, technological, and organizational issues related to ITSs. The
previous chapters, for the most part, have described basic rescarch issues and suggested priorities for continued
basic rescarch. This chapter has complemented the others by addressing the pragmatic and applied issues
related to ITSs. Therefore, this chapter ends with recommendations for research related to I'TS applications.

Research Directions for the Application of ITSs

Near-term research should capitalize on the interim results of research and development in progress
and on findings from projects that have recently bcen completed. The goals of near-term research and
development should be the following:

Refine existing tools by developing ITSs,

Explore the devclopment and delivery of ITSs on microcomputers,
Use exisling expert system shells for ITSs,

Study the cognitive aspects of user intcrfaces,

Commit to evaluation, and

Integrate intelligent job aiding with intelligent training.

SNh LN

The first recommendation is to move forward from the laboratories to real-world applications. Such
cfforts will permit rescarchers and curricula developers to identify softwarc and hardware limitations. Further,
thesc efforts will refine the tools and practices of ITS dcvelopment. The Navy has funded the Steamer project
and, most recently, the Intelligent Maintenance Training Systcm (IMTS). The IMTS project has produced its
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first demonstration system, a hclicopter maintenance and troubleshooting system. The second effort of that

. project will more closcly involve Navy technical personnel in the knowledge development phase. While the
sccond development is undcrway, the first system will be evaluated in an operational training squadron.
Simultaneous development and use will accclerate maturation of the IMTS and othcr such ITSs.

The Knowledge Acquisition/Intclligent Authoring Aids (KA/IAA) is another example of rescarch in
progress that will result in tools for ITS development. This project will demonstrate an ITS system first in a U.S.
Army training environment, although the work is sponsorcd by the Army, Navy, and Air Forcc.

In the short tcrm, the efforts of the KA/IAA and IMTS projects can be expanded. If a variety of
research and development teams are permitted to use and modify the ITS authoring tools, the results arc likely
to be improved ITS development systcms within 3 to S years. In that same time frame, hardware capabilitics will
improvc, thus improving the ITS.

Not all of ITS development and dclivery has to be done on dedicated Al workstations. A near-tcrm
cffort might comparc expert system devclopment capabilitics of off-the-shelf microcomputers and Al
workstations. Such comparison must consider not only capabilitics but also costs. The cost tradcoffs must
incorporate in particular the expected time necded to develop ITS software based on the capabilitics of the
respective machines and programming environments.

Near-term rescarch should explore the usc of personal computers for ITS delivery. When the ITS must
be dclivercd on an Al workstation, its acceptance is hampered because the user organization is not likely to have
a reasonable number of such stations in each training center. The abundancc and low cost of personal
computers make thcm likely candidates for ITS dclivery.

If microcomputers are used as development systems, it may be possible to capitalize on existing expert
system shells that are readily available. The off-the-shelf frameworks for expert system devclopment are most
likely to provide the expert module as described by Anderson (this volume). However, other portions of the ITS
system, such as the student module, will have to be developed and integrated with the existing software.

An Air Force example of a small-scale effort implemented on an IBM PC/XT is described by White
and Cross (1986). They combined an instructional program written in PASCAL with the M.1 expert system shell
by Teknowledge, Inc. to build a small ITS for a war game called TEMPO. Their project selected the low cost,
ofl-the-shelf hardware to make their ITS availablc in numcrous Air Force locations. Their program can be
modified for rcal-world applications and providcs an intclligent computer adversary as a gaming partner. It
includes an instructor-expert module to provide advice and a performance critique.

Another ncar-term research effort should be the integration of ITSs with existing and proven computer-
based training systems. This type of project can capllallze on the computer systems already in place as well as on
the organizational support for those systems.

Ongoing evaluation is an important near-term research goal (see Littman & Soloway, this volume).
Evaluation should focus on existing ITS devclopment tools. It should also assess the valuc of ITSs over
conventional computer-based instruction and over conventional instruction. These evaluations could determine
whether the ITS is instructionally sound and cost cffective. Further, evaluations will help to identify the strengths
and weaknesses of currcnt ITSs and provide direction for future rescarch and development. In the ncar term,
research might broaden the scope of cvaluation to include new measures that are reflective of the rcality of the
work place. In a frenzy to develop new systcms the tendency is often to  de-emphasize cvaluation. Ideally, ITS
research and development should avoid that temptatioa.

ITS development must place adequate emphasis on the user interface (see Miller, this volume). ITSs

must be developed to be easy to use. Research should focus on the learnability of intclligent instructional
software. A research cffort of this type might focus on "cognitive crgonomics,” which refers not to typical
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human factors considerations like character size, color, and contrast but (o the cxtent that the user can easily
understand and Icarn from the system. The result might be a sct of guidclines to be used not only by ITS
designers but by all personnel involved with the design of prime or training systems.

A previous scction discusscd the job incumbent and issucs related to intelligent job aids and embedded
training in rcal cquipment systems. This author belicves that rescarchers in the fields of intelligent job aiding
and ITSs should develop a close working relationship.  Lack of cooperation among these rescarch communitics
will result in redundant cfforts and difficultics with intcgrating their work at a later date.

The ncar-term research and development efforts will support long-term goals as well as define ncw
oncs. This chapter has concentrated on the use of ITSs in technical training and has not addressed such areas as
tactical decision making, business management, intcrpersonal communications, or public education.

The ncar-term recommendations imply that the depth of ITS rescarch can be increased by building and
cvalualting tools and application systcms in various tcchnical domains. Long-tcrm research should emphasize the
breadth rather than the depth of ITS development. This rescarch should investigate whether the tools and
trchniques of ITSs for technical subject matter will transfer to other instructional arcas.

Summary

This chapter has answered the following questions: Who will use 1TS? What can cach user expect from
ITSs? How can ITSs be developed? It has emphasized real-world, pragmatic issues related to ITS development.

The ficld of ITSs is in ils infancy, and development cfforts are likcly to be labor intensive. However,

now is the time to develop and test ITSs in a variety of training applications. The science and technology,
although not fully maturcd, are ready to undergo preliminary application.
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DISCUSSION

Pragmatic Considerations in Research, Development,
and Implementation of Intelligent Tutoring Systems

Pamcla K. Fink
Rescarch Scicntist
Southwest Research Institute
San Antonio, Texas

One of the problems with pragmatic issucs is that when you look at a list of
things you should do, it all seems pretty obvious. Since I did not want to simply re-
hash what already looked obvious, I tried to figure out cxactly wherc these lists we
generate come from. 1 realized, then, that the itcms on these lists all come from
cxperience. I decided that this would be the point of my talk: wec have to lcarn from
expericnce becausc the pragmatic issucs rcally do comc from hearing war stories told
by other pcople in addition to our own. And, in a scnsc, this is the real issuc of ITS in
gencral. Teaching concerns passing on cxpcricnce so that we are not reinventing the
wheel cvery time we attempt to solve a problem. So, 1 tried to think of what
expericnces--lessons learned--cxist that ITS could Icarn from.

Onc of the obvious rcsponses is that ITS is computer software, and there arc
plenty of war stories to learn from in computer software devclopment. I started to
makec a list of some of the things we could lcarn from in dcveloping conventional
computer software (sce Figurc 7.1). As Richardson implicd, we at Southwest Research
Institute were involved with a project for General Motors in developing a system that
at one point supported 55 diffcrent programmcrs and engineers. The system tests the
elcctronics in many of the top-of-the-linc Buicks and Cadillacs. Some of these cars
have as many as 16 microproccssors. So thcrc are plenty of war stories just at
Southwest Research Institute.

Of course, this list of storics and lcssons-learned could go on and on, but one of
the first lessons that comes to mind is to make sure you get the users involved from
the beginning, because they are the oncs that arc going to use the system. Involving
thc users is critical to whether or not the system you arc dcvcloping is going to be
uscd, rcgardless of whether it actually solves the problcm you sct out for it to solve.
You also have to think about thc uscr intcrface. 1f the uscr cannot dcal with thc uscr
interface, then the system is not going to be used.

Also, you have to make sure that the hardware and softwarc are appropriate so
that when you arc building this system, you are not constantly fighting the
cnvironment that you are trying to build it in. You should make sure that they do
indccd fit the problem you arc trying to solve. You should also make sure that you
undcrstand thc problem before you start designing and coding. Going back later
when you suddenly realize you misundcrstood somcthing can be very expensive. Of
course, this is something that AI has hciped with. And whenever you are weighing
tradc-offs—bccause there are bound to be somec when you arc coding--again, make surc
you takc the user into considcration.

And then, of course, there is the cver-present documentation. You must
documcnt so that if you arc not the onc who is maintaining the systcm, or even if you
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are, there is some more human description of what the code is supposed to do. Thesc
arc just some of the typical things that comc up when you arc devcloping
conventional software.

Then I went on to think, ITS also involves a lot of artificial intelligence, and,
in somc scnse, it uscs expert systems. So what arc somc of the war storics we know

WHAT ITS CAN LEARN FROM
CONVENTIONAL SOFTWARE DEVELOPMENT:

e User involvement from the start
e User interface is paramount
e Select appropriate hardware/software

e Understand what problem is to be solved
before starting to design and code

e Keep needs and objectives in mind when performing
trade-offs during design and implementation

e Documentation

Figurc 7.1. Lessons to Be Learned
from Computer Software Development.

from expert systems? Again, you have probably seen the list in Figure 7.2 a million
times—it’'s common sense. First, the cxpertisc has to cxist if you are going to build an
expert system. You cannot build an expert system for cxpertise that does not exist.
Second, the source of expertisc--and this is another kcy issuc—-must be nonhostile. I do
not even ask that the cxperts be enthusiastic about the system. What I have usually
found is that as long as they are not hostile to start with, they become enthusiastic
after a period of time. It is all a matter of how you handle it. Another point is that
an expert system has availablc to it only the knowledge you put into it. This often
comes as a surprisc to thc pcople 1 work with who arc the domain cxperts. They
sometimes belicve that somechow, miraculously, even though you know nothing much
about their domain, you can put all this knowledge into the expert systcm and havc it
work as well as, if not better than, the original source. Also, the arca of cxpertise
must be well-dcfined. That is just a limitation on current tcchnology, but it may be a
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limitation for a long time to come. Wc must have a wcll-defined areca in which to
work. Another point is that the arca of cxpertise must be of interest. There is no
point in building an cxpert system that no onc is going to carc about, and this is also
truc if we are going to develop an I'TS.

WHAT ITS CAN LEARN FROM
EXPERT SYSTEM DEVELOPMENT:

e Expertise must exist

e Source of expertise must be non-hostile

® An expert system only has available
to it the knowledge put in it

e Area of expertise must be well-defined

e Area of expertise must be of interest

Figure 72. Lessons to Be Learned
from Expert Systems.

So, what is the moral of this story? Usually, when software systems are being
dcveloped, the programmers arc all busy following bugs and trying to get a certain
picce of softwarc to work. And they arc so busy looking at the tree that they lose
sight of the forest; that is, the system as a whole. We must kcep pecople looking at the
forcst when designing these systems in order to be surc that when we are done, we
have mct the user’s nceds.

Now, when I looked at these lists, I thought my presentation was about finished, and
I set about to wrap up my talk. Then I realized that I had done exactly what I was trying to
make sure we did not do. There are other forests we need to deal with; ITS is
multidisciplinary. I realized that I was addressing only the software issues here, which is the
area I know the most about. But I was not addressing all of the other issues involved with
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developing an ITS. I was busy looking at one forest, the software issues, when there arc
other forests that must be considcred as well. Let me illustrate what must be considered
when developing an ITS. Figure 7.3 shows how I now imagine ITS.

Conventional
Software

E-S
Development CAl Human
\ Factors
Education \§:§:\\\
. \
Psychology )

~

N

Figure 7.3. Illustration of I'TS Development.

We must bring in pragmatic issucs from all of these arcas for I'T'S. This is a
river, It starts up here at the top, and it has somc winding curves in it. All these other
arcas (expert systecms, conventional computer-aided instruction, the educational ficld,
psychology, issues in human factors) arc going to contribute to this river that will pro-
duce an intclligent tutoring systcm. Along the way, you arc going to have to make
sure that you stay in the mainstrcam and takc into account all of these tributarics or
you will end up getting stuck in a little whirlpool and running around in little circles
or going down a dcadend branch. Thcre may be some rapids on thce way, but you
have to be surc that thosc rapids arc in the mainstrcam. They may be rough, but they
will take you to thc end eventually. So, this is rcally my main mcssage: the key
pragmatic issuc is that we must remcmber to learn from cxperience. It is somcthing
that wc don’t always do.

In a scnse, Figure 74 lists my rccommendations. We should be--and T hope 1
am not missing any arcas that should bc contributing to ITS—-cexploring all of thesc
arcas. Of coursc, in exploring all of these arcas, the problem is that no onc person can
possibly undcrstand all of the issucs involved in all of these arcas. We must, in some
way, create a nctwork of rcscarchers who are cxperts in all of these diffcrent arcas
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and who communicate with cach other. And this nced opens another set of pragmatic
issucs that I have becn involved with: trying to communicatc with people who do
indced speak English but who work in other arcas of cxpertisc. Still another problem
is communicating thc rcal issucs of any particular ficld to somcone who docs not
know much about the ficld.

RECOMMENDATION: BASE NEAR-TERM, 'PRACTICAL'
EFFORTS ON WHAT WE ALREADY
'KNOW!'

e Explore expert system technology
e Explore CAIl

e Explore psychology

® Explore education

® Explore conventional software

® Explore human factors

Figurc 7.4. Recommendations.
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CHAPTER 8

EVALUATING ITSs:
THE COGNITIVE SCIENCE PERSPECTIVE

David Littman and Elliot Soloway
Cognition and Programming Project
Department of Computer Scicnce
Yale University
New Haven, CT

I. INTRODUCTION: WHAT THIS CHAPTER IS ABOUT

There can be no doubt that cvaluating Intelligent Tutoring Systems (ITSs) is costly,
frustrating, and time-consuming. In fact, in our own work to build PROUST,
one component of an ITS for introductory programming students, evaluation has
consumed nearly as much cffort as the design of PROUST itself. If evaluation of
ITSs is so costly, why do it at all? Wouldn't it be better just to finish one ITS and
then build the next one, perhaps letting the marketplace determine survival? On
the contrary: our expericnce with PROUST has taught us that, far from being a
uscless burden, evaluation pays off by helping to answer two cvaluation questions
that are central to cognitive science, Artificial Intelligence (AI), and education:

1. Evaluation Question 1: What is the educational impact of an ITS on students?

2. Evaluation Question 2: What is the relationship between the architecture of
an ITS and its behavior?

Our attempts to evaluate PROUST with the two evaluation questions in mind have
proved to be very beneficial. We have Jearned a great deal that we might not other-
wise have learned about how novices learn to program, how to teach programming,
and how to build ITSs to actually do the teaching.

As we have gained expcrience evaluating PROUST, we have found that ad-
dressing the two cvaluation questions leads to a somewhat different perspective on
cvaluation from that of traditional educational cvaluation. Traditional educational
cvaluation consists of two main categorics, formative and summative evaluation.
Dcsigners of educational technology use formative evaluation to define and refine
their goals and methods during the design process. They use summative evaluation
to dctermine whether a finished educational product is effective after it has been
built. Because building ITSs is still somewhat an art, and because there are few ITSs
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that can be called “finished,” designers of ITSs are currently more concerned with
usefully guiding the development of their systems than with determining whether
they are effective educational end products. At least for the time being, then, the
idea of formative evaluation scems more appropriate for designers of ITSs than does
the idca of summative evaluation. Hence, we have formulated Fvaluation Question
1 and Lvaluation Question 2 to be much more focused on the development of ITSs
than on determining whether they are cffective educational end products.

Unfortunately, there is no standard set of evaluation methods for addressing the
two evaluation questions — the field of ITSs is too young. However, as a result of our
ongoing evaluation of PROUST, we have begun to define two classes of evaluation
methods that are uscful for this purpose. One class consists of methaods based on
recent progress in student modecling. From them, researchers can learn how an ITS
affects students and changes their knowledge and problem-solving skills. Methods
in this class can be used for eztcrnal evaluation, so called because this kind of
cvaluation assesses an effect external to the ITS; namely the student’s learning.
External evaluation therefore addresses Evaluation Question 1.

The second class of evaluation mecthods, adapted from knowledge engineering
techniques developed for Al, can bec used to construct an accurate picture of the
relationship between the architecture of an ITS and its actual behavior. These
mcthods are the basis of internal evaluation, which is concerned with the inner
workings of an ITS. Internal evaluation therefore addresses Evaluation Question 2.

In this chapter we explore external and internal evaluation and demonstrate how
the two classes of methods we have developed have helped us to address the two
evaluation questions. In particular, we show how using the methods to evaluate
PROUST has made it possible for us to (a) isolate specific aspects of PROUST
that have particular effects on students’ learning and (b) understand more clearly
how the design and implementation of PROUST lcad to its behavior. One of the
major benefits of external and internal evaluation is that they have greatly enhanced
our ability to improve and modify PROUST in a controlled, goal-directed manner
as we design and redesign subsequent versions; this is, we argue, a primary goal of
current work in ITSs.

Even though our methods of evaluation have been productive, we are aware that
we tread new, potcntially controversial ground. We are equally aware that, at this
time, we cannot present a fully formed theory of external and internal evaluation.
Nonetheless, the potential uscefulness of the directions and techniques for evaluation
identified in this chapter warrant their presentation to the ITS community.

The remainder of this chapter explores the possibility of evaluating ITSs from
the perspective of external and internal evaluation. Iirst, in Section II, we look
more closely at external evaluation to sce how recent advances in cognitive science
have made it possible to perform fine-grained analyses of the impact of an ITS
on a student’s underst; "ding. These methods are illustrated with examples of
cvaluations of PROUST, our ITS for novice programming. Next, in Section III, we
describe some of the knowledge engincering methods of internal evaluation we have
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used to gain insight into the relationship between the architecture of an ITS and
its behavior. These methods are also illustrated with examples from our own work
with PROUST. In Scction IV we show low methods simnilar to those of external and
internal evaluation have been used to evaluate several well-known ITS s. Finally,
in Section V, we indicate several issues for future rescarch that are implied by our
analysis of cvaluation.

II. EXTERNAL EVALUATION: THE COGNITIVE PERSPECTIVE

Recent progress in cognitive science and Al has provided the field of computer-based
instruction with new and powerful tools - namely process-based student models
(see VanLehn, this volume) — for representing students’ knowledge and problem-
solving skills. Because these tools were not available to rescarchers who developed
Computer Aided Instruction (CAI), they made the reasonable and pragmatic as-
sumption that students’ answers to test uestions adequately reflected their mental
processes. The goal of evaluating CAI thercfore, has been primarily to deter-
mine whether students can corrcctly respond to test questions. With the advent
of process-based student models, however. the goal of evaluating ITSs ought to be
much more ambitious. That goal should be to determine how well the ITS teaches
students the knowledge and skills that support the cognitive processes required for
solving problems in the content domain of the ITS.

This cognitive perspective on external evaluation, made possible by student mod-
eling, is the topic of this scction. We first define student models and discuss their
potential role in evaluation. We then report on our external evaluation of PROUST;
finally we address some anticipated criticisms of applying the cognitive perspective
to external evaluation.

Student Modecls and Their Use in Evaluation

As an ITS interacts with a student, it builds up an understanding of the student’s
knowledge and skills which it uses to interpret the student’s behavior and, in part, to
guide its own actions. The cominon name for the ITS's understanding of the student
is “student model”. In order for an ITS to build a student 1nodel its designers must
provide it with methods of rcasoning about students’ problem-solving in the ITS's
domain of instruction. There are many kinds of student modeling methods (sec
VanLelin, this volume) but two major types are those that are based on process
models of problem solving and those that are not.

Student modeling techniques basced on process models solve problems in a suppos-
edly humanlike way. For example, the student modeling component in Anderson'’s
LISP tutor is based on a process model of hiow students write simple LISP programs
and is embodied in their GRAPES simulator (Anderson, Farrell, & Sauers, 1984).
The LISP tutor uses the GRAPES simulator to sitnulate the problem solving of
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novice LISP programmers when they write simple LISP programs. The student
model is thus represented in terms of what the GRAPES process model did to solve
tlie problem.

Student models that arc not based on comprehiensive process modeling do not
solve problems as humans do. For example, WUSOR, the tutor for the discovery
game WUMPUS built by Carr and Goldstein (Goldstein, 1982), has a chieck list
of skills required for playing WUMDPUS. The student model simply consists of the
<kills that have been checked off in WUSOR's representation of the skills. WUSOR
does not try to play WUMPUS as a student would in order to build its student
model and, hence, does not use process models.

Whether or not student models actually have process models that simulate stu-
dents’ behavior, they can be used to assess how well the ITS teaches students skills
and knowledge for solving problems that arc like the problems encountered during
lcarning. First, student modeling techniques can guide the construction of new
problems for testing the student. Because these techniques use explicit representa-
tions of problem solving knowledge and skills, and possibly the actual processes of
problem solving, thiey can be used to predict how well the student will perform on
the new problems and thus which probleins should lead to effective problem solving
and which to ineffective problemn solving.

Because student modeling techniques capture how students solve problems and
not merely that they can solve the problems, they can be used to identify problems
that the student should be able to solve. Student modeling techniques that are not
based on process models can be used to predict some of the knowledge and skills
the student will use to solve problems. Process-based techniques can be used to
predict the actual process the student will go through to solve problems. Thus, the
evaluation of ITSs can be substantially different from the evaluation of CAIL The
latter focuses primarily on correct and incorrect answers; the former asscsses the
reasons that students give correct and incorrect answers.

In the foregoing discussion, we have purposely glossed over an important issue:
the degree of completeness, or comprehensiveness,of the process model underlying
the ITS. For example, Repair Theory (Brown & VanLehn, 1980) is a relatively
comprehensive process model of how people carry out subtraction. In contrast,
the process model underlying PROUST, our system that diagnoses students’ buggy
programs, is considerably less comprehensive. Although comprehensiveness is desir-
able, it is not always possible, and it is not even necessary for evaluation. In fact, a
student model such as the checklist of skills used in WUMPUS and WEST can still
provide insight into the microstructure of the skills and concepts students use when
they solve problems. In an external cvaluation of an ITS the criterion is not how
many of the students’ answers arc correct but rather the underlying, fine-grained
skills that have been learned. To mcasure these skills during the development of
an ITS, it is important to be able to perform external evaluation with models that
are not complete. In the next section, we address the problem of external cvalua-
tion with incomplete process models by showing how we were able to evaluate the
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impact of PROUST on a circumscribed aspect of students’ programming.

An Example of External Evaluation: PROUST

This section presents our initial attempts to perform an external evaluation of
PROUST. First, we describe PROUST and lhow it works; then we discuss our
approach to the problem of external evaluation.

Our external evaluation of PROUST was based on a process model of novice
PASCAL programming. We rcasoned about the process model to identify skills
we thought PROUST should help students learn. Of course, our process model of
novice programming is incomplete. Thus, one implication of our successful eval-
uation of PROUST is that it is not necessary to have a complete process model
in order to perform an external evaluation from the cognitive perspective. This
result is encouraging because the development and evaluation of ITSs must be done
concurrently, and because of the unavoidable necessity of making evaluations with incom-
plete process models.

A Description of PROUST

PROUST is a large Lisp program written by Lewis Johnson (1986) that finds the
nonsyntactic bugs in students’ PASCAL programs. PROUST is especially expert
at finding bugs in programs that students write for the rainfall assignment, shown
in Figure 8.1. The assignment, which is usually given during the fifth week of class,
is to write an enhanced “averaging program” that calculates from an input stream
of rainfall values the average, the maximum rainfall on any day in the period, the
number of rainy days, and so forth. The program also prints out several summary
values.

A correct solution to the rainfall assignment is shown in Figure 8.2. Figure
8.3 shows part of a buggy solution that contains three extremely common bugs;
Figure 8.4 shows what a student secs as a result of asking PROUST to identify the
bugs in the program in Figure 8.3. Notice espccially that the output of PROUST is
essentially an identification of the student’s bugs, sometimes accompanied by a brief
statement of how the bug violates the specifications of the assignment. In addition,
PROUST makes an effort to tell the student which bugs it thinks are important
for various parts of the program (c.g., the OUTPUT part). Thus, the first bug that
PROUST reports is very common: Students often neglect to consider the case in
which the user does not cnter any valid data. If no data are entered, a runtime
divisiu. by-zero error occurs and can cause the program to discontinue its run.
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The Noah Problem: Noah needs to keep track of the rainfall in the New Haven area
to determine when to launch his ark. Write a program so he can do this. Your
program should read the rainfall for each day, stopping when Noah types "99999"
which is not a data value, but a sentinel indicating the end ol input. If the user types
in a negative value, the program should reject it, since negative rainfall is not
possible. Your program should print ont the number of valid days typed in, the
number of rainy days, the average rainfall per day over the period, and the maximum

amount of rainfall that fcll on any one day.

Figurc 8.1. The Rainfall Assignient.

Program Rainfall{input,output);
Var DailyRainfall, TotalRainfall, MaxRainfall, Average : Real,
RainyDays,TotalDays : Integer;
Begin
RainyDays:= 0, TotalDays:= 0; MaxRainfall:= 0; TolalRainfall:= 0,
Writeln ('Please Enter Amount of Rainfall’);
Readin{DailyRainfall),
While (DailyRainfall <> 99999) Do
Begin
Il DaityRainfall >= 0 Then
Begin
If DailyRainfall > 0 Then RainyDays := RainyDays 4 {;
TotalRainlall == TotalRainfall 4. DailyRainfall;
If DailyRainfall > MaxRainfall
Then MaxRainfall = DailyRainfall;
TolalDays := TotalDays -+ 1
End,
Else Writeln {'Rainfall Must Be Greater Than 0'),
Read{DailyRainfall)
End,
If TotalDaysCounter > 0 Then Begin
Average = TolalRainfall/ TotalDays;
Wiriteln(‘Average is: ', Average: 0:2);
Writeln(‘Maximum is: °, MaxRainfall: 0:2);
Writeln('Total Number of Days is: °, TotaiDays);
Writeln('Total Number of Rainy Days is: ', RainyDays)
End,
Else Writeln{'No Valid Days Entered.’);
End.

Figure 8.2. Sample of a Correct Rainfall Program.
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01 Program Rainfall(input,output);

02 Var DailyRainfall, TotalRainfall, MaxRainfall Average : Real;

03 RainyDays,TotalDays : Integer;

04 Begin

05 RainyDays:= 0; TotalDays:= 0; MaxRainfall:= 0; TotalRainfall:= 0,
06 While (DailyRainfall <> 99999) Do

07 Begin
33 End,
BUG 1: Missing Divide—DBy—-Zero Guard
34 Average = TotalRainfall/ TotalDays;
BUG 2: Missing Output Guard On Average
35 Writein('Average is: ', Average: 0:2);
3UG 3: Missing Output Guard On Maximum
36 Writeln{'"Maximum is: ', MaxRainfall: 0:2),
End.

Figure 8.3. Sample of an Incorrect Rainfall Program.

To analyze a student’s program, PROUST attcinpts to see how the student’s
program has attempted to meet the specifications of a problem statement. PROUST
understands problem specifications in terms of goals that inust be achieved and uses
a knowledge base of plans that students know and that can achieve those goals.
PROUST’s main analytic task is to locate in the student’s code the plans for each
of the goals in the problem specification. For ecxample, in the rainfall assignment,
the main goal is to calculate the average of a scries of rainfall values entered by the
user. PROUST recognizes that to achieve thc averaging goal, an iterative looping
plan is required to achieve the subgoals of the main goal. The loop must collect the
rainfall values, sum them to calculate the running total, and count the number of
days. After the running total and counter have been calculated, the running total
must be divided by the counter to obtain the average. PROUST thus sets up an
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agenda of goals and subgoals and attempts to match each of them to the student’s
code by using techniques for finding buggy implementations of plans. When all
the goals on the agenda have been successfully matched to the student’s code, a
process that sometimes invokes the techniques for finding buggy plans, PROUST
has understood the student’s prograin because it knows how the student achieved,
or failed to achieve, each of the goals in the specification. Each of the failures is
understood by PROUST as a bug.

Starting Bug Analysis, please wait...
NOW BEGINNING BUG REPORT:

Now Repotting CRITICAL Bugs in the OUTPUT part of your program:

Bug 1. You need a test to check that at least one valid data point has been input belore
line 34 is executed. The Average will bomb when there is no input.

Now Reporting MINOR Bugs in the OUTPUT part of your program:

Bug 2: The maximum is undefined if there is no input. But line 35 outputs 1t anyway.
You should output the average only when there is something to compute
the average of.

Bug 3: The maximum is undefined if there is no input. But line 35 outputs it anyway.
You should output the maximum only when there is a need to compute
the maximum of.

BUG REPORT NOW COMPLETE.

Figure 8.4. PROUST Output for Program in Figure 8.3.

External Evaluation of PROUST

Johnson’s (1986) analyses show that PROUST is able to understand between 70%
and 80% of all programs written by novices trying to solve the rainfall assignment;
other evaluations of PROUST’s ability to find bugs have been reported as well (cf.
Sack et al., 1986). This discussion will nnot repeat the results covered in other papers.
[t focuses instead on whetlier a program that simply identifies nonsyntactic bugs for
novice programmers and provides only minimal, noninteractive, tutorial advice can
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positively affect their programming skills. This evaluation is based on our process
model of novice programming. As noted before, although the modcl is incomplete
and somewhat idealized, it nonctheless makes some interesting statements about
bugs that should cause novices difficulty.

Boundary condition bugs are in this category. A boundary condition bug occurs
when the programmer neglects to guard some aspect of the program, such as an
arithmetic calculation, against an unexpected value. Examples of boundary con-
dition bugs are shown in Figure 8.5. In BUG 1 the student has overlooked the
boundary condition in which the user does not enter any valid data. The calcula-
tion of the average results in division by zero, which causes the program to crash.
The other bugs arise in the same boundary condition and result not in the crash of
the program but in the illegal output of a value. For example, BUG 2 permits the
average to be printed out even if it was never calculated.

Program Rainfall(input,output};
Var DailyRainfall, TotalRainfall,MaxRainfall, Average : Real;

RainyDays : TotalDays : Integer;

Begin
RainyDays:= 0; TotalDays:= 0, MaxRainfall:= 0; TotalRainfall:= 0;

Writeln (‘Please Enter Amount of Rainfall’);

Readin(DailyRainfall),
While (DailyRainfaill <> 99999) Do

Begin
if (DailyRainfall > 0) Then

Read(DailyRainfall)
End,

BUG 1: Divide—By—Zero—Guard Missing
Average := TotalRainfall/ TotalDays;

v

BUG 2: No Guard for Undefined Average
Writeln(“Average is: *, Average: 0:2),

BUG 3: No Guard for Undefined Maximum
Writeln(‘Maximum is: ’, MaxRainfall: 0:2);
Wiriteln(* Total Number of Days is: ', TotalDays);
BUG 4: No Guard for Undefined Rainydays

Wiriteln(' Total Number of Rainy Days is: ', RainyDays)
End.

Figure 8.5. Some Boundary Condition Bugs.
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Very generally, the process model of program generation posits that a program-
mer reads a problem statement, identifics from it goals to attain, and then selects
and implements plans to achieve the goals. The model predicts that errors involv-
ing boundary condition bugs are casy to make but hard to find because goals for
handling boundary conditions do not typically arise directly from the statement
of the problem. A programmer must infer that boundary conditions are necessary
from knowledge about negative instances; for example, users who do not enter any
valid data. The programnier must then create a safeguard to insure that legal
values have been entered. According to the process model, novices are deficient
in generalized programming knowledge and thercfore do not identify goals such as
safeguarding boundary conditions; morcover, they typically do not have plans for
achieving the boundary condition goal even if they identify it. Thus, they frequently
make boundary condition bugs.

The process model predicts both how casy it is to make bugs and how hard it is
to find them. The bug of failing to include an update for the counter for the divisor
in an averaging program is both casy to make and easy to find because its effects
are apparent as soon as the program attempts to calculate an average. Boundary
condition bugs are easy to make but hard to find because they show up only under
specific input conditions. If students do not generate sufficient test data for their
programs, they will rarely find their boundary condition bugs. Because effective
testing of programs requires extensive generalized programming knowledge, most
novices are poor program testers. (J. Spohrer’s [1986] elaboration of the process
model is based on extensive empirical data about students’ buggy programs and
more fully accounts for the prevalence of boundary condition bugs.)

We focused our initial evaluation of PROUST on Liow well it could help students
manage boundary condition bugs for three reasons. First, boundary condition bugs
are some of the most common bugs students make. Second, our process model
offers a reasonable account of why they are easy to make and hard to find. Third,
PROUST is very good at identifying them so they are prime candidates for an
evaluation of how well a bug identification program can help students. In addition to
evaluating boundary condition bugs we also assessed PROUST’’s impact on students’
ability to manage other types of bugs but we do not present those results here.

A Guide to External Evaluation

The goal of an external evaluation of an ITS is to identify properties of the ITS
that affect students’ problem-solving processes in positive and negative ways. I'rom
our experiences in performing extcrnal evaluations of PROUST, we have abstracted
a pattern of activities that characterizes our approach to the analysis. Figure 8.6
illustrates our approach to assessing the effectiveness of PROUST and, by extension,
any ITS. The top portion of the figurc, labeled THEORY, shows the four theoretical
components of an external evaluation. The bottom portion of the figure, labeled
PRACTICE, shows the way in which these components were combined in practice in
an evaluation of PROUST. Thus, as the figurc shows, construction of an cvaluation
of an ITS typically follows a well-defined plan. The following description discusses
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each component of external evaluation in terms of the underlying concept and its
application to the extermal evaluation of PROUST.

1. Cognitive Model:
Concept: Determine which aspects of the cognitive model are relevant to eval-
uating the cffects of the ITS on students’ programming skills.

Application: In the present case we focused on goals that are implicit in prob-
lem statements and on the plans that are required to achieve these goals.

2. What’s Hard:
Concept: Identify a class of problems that arise from a task that students have
trouble doing.

Application: In the present casc we reasoned that (a) boundary condition bugs
are easy for students to make because they call for specialized knowledge to
identify and plan for them and (b) they are hard to find because most students
do not know how to generate effective test cases that would detect them.

3. Learning Model:
Concept: Determine which functional aspects of the ITS should affect students’
ability to avoid or correct the target problems.

Application: In the present case we concluded that PROUST’s identification
of bugs for students would teach them about the existence of the class of bugs
that arise at boundary conditions.

4. How to Test:
Concept: Identify classes of behaviors that students should demonstrate when
the ITS is having a positive or a negative impact.

Application: In the present evaluation we used students’ ability to find and
repair boundary condition bugs as measures of PROUST’s impact.

5. External Evaluation:
Concept: Analyze the students’ behaviors both individually and in groups. The
groups of students are defined either according to (a) some attribute, derived
from the process model, that is common to thc program generation processes
of all students or (b) some response the ITS makes to all the students in the
group.
Application: In the present case the performance of groups of students who
had access to PROUST was compared with that of groups of students who did
not have access to PROUST. In addition, to control for PROUST’s ability to
identify bugs, we assessed the effect of the accuracy of PROUST’s identification
of bugs for students.
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To measure the effect of PROUST’s identification of bugs for students, we defined
two performance tests that reflect our process theory of programming. From these
tests we inferred students’ underlying problein-solving processes. Onc test was the
pattern of boundary condition bugs in students’ versions of the rainfall assignment.
When students do the rainfall assignment, they typically generate 15 versions before
submitting one for grading. As noted, we predicted from our process model that
students would have difficulty with boundary conditions because they are easy to
make and hard to find. We also predicted that if PROUST identified boundary
condition bugs for students, they would be less likely either to make as many of the
boundary bugs in the first place or to leave the bugs in their final versions.

The second test was students’ scores on the midterm examination. We reasoned
that because PROUST could help students isolate boundary condition bugs, stu-
dents would be better able to find such bugs in programs written by other program-
mers. Therefore, the students’ task on the midterm examination was to identify,
describe, and fix bugs that had been sceded in programs similar to the ones the
students had been writing in their assignments. Boundary condition bugs, as well
as other types, such as performing the wrong arithmetic calculation, were seeded
in the midterm. Thus, even though both mecasures of improvement in students’
ability to identify bugs essentially count numbers of correct answers, we arrived at
these measures by reasoning explicitly about our process model, and we used the
measures to make inferences about the cffects of PROUST on students’ knowledge
and skills.

Bricfly, the tests supported the claim that PROUST helps students repair and
avoid boundary bugs when they are writing programs to solve the rainfall assign-
ment. Access to PROUST also appears to improve by approximately 16% students’
ability to identif; seeded boundary condition bugs in programs they did not write.
(See Sack et al. {1986] for a full report of these evaluation results.)

In summary, the evaluation of the educational effectiveness of one aspect of
PROUST’s performance was based on the perspective of cognitive science. The eval-
uation began with a process model that explains novice buggy programming. We
used the model to identify the management of boundary cases as a task in program-
ming that students typically find troublesome. Then we predicted how PROUST’s
bug identification strategy would affect students’ ability to handle boundary cases.
We also used the process model to interpret the finding that PROUST is only
somewhat helpful for teaching students to find and repair bugs.

Because simply identifying bugs for students is not enough to achieve radically
improved performance, the next version of PROUST will have to include stronger
tutorial capabilities to help students learn debugging skills. The evaluation also
indicates that some aspects of the process model must be changed. We had predicted
that if students knew about a certain kind of bug, they would not make them. The
process model requires a more complex mechanism to account for students’ failure
to eliminate boundary condition bugs after a one-trial lcarning experience — that
is, after these bugs were identified for them. The mechanism that is needed to
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account for this phenomenon is still somewhat unclear, but evidently it will have
to specify the conditions under which students can identify and achieve goals that
are not explicitly called for in the problem assignment and that involve specialized
programming knowledge.

Lessons Learned from External Evaluation of PROUST

The initial external evaluation of PROUST taught us three important lessons.
First, PROUST has some positive educational effects. Second, we learned some
important principles for formulating and executing external evaluations of ITSs.
Third, and perhaps most important, we were successtul in evaluating PROUST
with an incomplete process model and then identifying insufficiencies in that model.
It is thus quite reasonable to expect that the process of developing an ITS can be
integrated with assessing its educational cffectivencss. This suggests that by per-
forming evaluations bascd on student models during development, we can facilitate
the development of ITSs.

Possible Objections to the Cognitive Perspective

The foregoing description of the external evaluation of PROUST may seem too
clean, and several objections can be raised about both the practicality of and jus-
tification for performing such evaluations. Thrce major criticisms of the cognitive
science approach are discussed here.

It is too hard. There is no doubt that detailed evaluations of students’ cognitive
processes will be extremcly time consuming and that in many cases, designers will
want to build ITSs before they have student models sufficiently powerful for doing
definitive evaluations.

However, a central promise of ITSs is that they will make use of the best that
cognitive science has to offer. ITSs are most decidedly not just CAI with an expert
system or two thrown in to generatc problem solutions. Rather, ITSs are intended
to understand students in a fundamental sensc; and one of the goals of the field
of ITSs is to produce systcins that are as good as the very best human tutors. Of
course, once we have achieved that goal, we will want to make ITSs that are better
than human tutors. For these rcasons the development of effective, cognitively
based evaluation strategics must procecd hand in hand with researchers’ growing
expertise in the field. Thus, although fully realized evaluations are too hard to make
now, they are still both a goal to achieve and a measure of our own progress toward
truly intelligent tutoring systemns.

We might use the wrong student models in our evaluations. The ability
to perform valid evaluations clearly depends on having powerful student models. If
the evaluation suggests that a particular student failcd to acquire the skills that the
ITS was intended to teach, and if the evaluation was based on an incorrect student
model, rescarchers may conclude that the ITS was not performing effectively.
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Avoiding this istake requires that rescarchers be sensitive to different ways of
representing knowledge and skills. A single model of student knowledge may not be
sufficient for evaluation. In fact, it scems naive to expect that a single model would
capture all the different ways that students might understand a domain. Rescarchers
therefore should investigate alternative ways that students can adaptively represent
knowledge and skiils. In addition, they must distinguish between assessing the
ability of the ITS to teach students how to solve problems and its ability to teach
students a particular way of representing problem-solving skills. In either case,
identifying correct student process models for an evaluation is crucial for the field,;
the problem of identifying the correct student model for any tutoring situation is
certainly no casier and just as important. It appears that progress in evaluation will
go hand in hand with progress in diagnosing students and identifying appropriate
student models.

Students’ internal representations are irrelevant to education. Propo-
nents of the microworlds approach to intelligent tutoring argue that an educator
s.aould not so much teach as provide tools that make it possible to learn. One
implication of this view is that student models, and hence process models, are su-
perfluous if not entirely counterproductive. Such models may be used to assess a
student’s progress or failure, but that is not the business of education.

Our own view is that educational philosophy should be divorced from the phi-
losophy of assessment. Regardless of the advisability of directive tutoring in educa-
tion, evaluating the effectivencss of intelligent tools for facilitating learning requires
having process models of students’ problem solving. Building such models in a
microworlds context may be difficult because microworlds environments are uncon-
strained; for just this reason model building promises to be extremely productive.

Thus, although there are several objections to the cognitive approach to evalua-
tion, three of the most interesting can be scen as practical rather than fundamental.
Indeed, work on the problems of cognitively based evaluations of ITSs may possibly
make significant contributions to the thcory of ITSs itsclf.

III. INTERNAL EVALUATION: THE ARCHITECTURE PERSPECTIVE

The goal of internal evaluation is to provide a clear picture of the relationship
between the architecture of an ITS and its behavior. To clarify this relationship it
1s necessary to characterize the ITS in terms of answers to three key questions.

1. What does the ITS know? It is inportant to answer this question whenever
a revision of the ITS is proposed. Any changes in the requirements of the
ITS should be based on a clear understanding of the cffort it will take to equip
the program with the knowledge necessary for achiey ‘ng the new requirements.
The question is addressed by an analysis of what the ITS can possibly do based
on what it knows.

2. How does the ITS do what it does? Answering this question assesses whether
the program perforins in the way the designers intended. It requires analyzing
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the ITS to determinc how the algorithms usc available knowledge to produce
the obscrved behavior of the ITS.

3. What should the ITS do? This question should be asked when a revision of the
ITS is proposed, particularly when it scems desirable to increase the teaching
ability of the ITS in one arca or reduce it in another. This question is answered
by clarifying the arcas of the tutoring domain, such as programming, that the
ITS is responsible for teaching.

Though we cannot provide a complete plan for answering these questions defini-
tively, we think that they are the right ones to ask.

This section discusses three methods adapted from knowledge engineering that
can help to characterize all components of an ITS, including the student model, the
curriculum content, the instructional component, the expert problem solver, and the
interface. We have found these methods useful for addressing the thrce questions
central to internal evaluation of ITSs. In what follows we describe the methods and
show how we have used themn to perform internal evaluations of PROUST.

1. Knowledge Level Analysis attempts to charucterize the knowledge in the
ITS and thus answers the first question, What does the ITS know? This ques-
tion is important to ask between versions of an ITS because any changes of the
requirements should be made with an understanding of how much effort would
be required to give the program the knowledge to achieve the new requirements.

2. Program Process Analysis uses focused simulations of the ITS to answer the
second question, How does the ITS do what it does? This method is intended
to provide information about whether the ITS does what it does in the way
the designers intended.

3. Tutorial Domain Analysis provides a mecthodology for iteratively adding
and subtracting requirements of the ITS and therefore answers the third ques-
tion, What should the ITS do?

Why should all this effort be required to understand an ITS? We often find ourselves
saying to each othier, “But it’s obvious! Why did we have to go through all this
analysis to sce that?” The answer is that ITSs are so complex that it is impossible
to know everything about them. We have spent years discovering new, important
facts about PROUST. Since each individual finding is obvious once brought to light,
it is easy to fall prey to an attitude of 20-20 hindsight. The cure for this is to ponder
all the things about PROUST that we do not know that are just waiting to trip
us up! Becausc ITSs are so complex, and therefore hard to understand, designing
them is a cyclical process in which a version is built, weaknesses and strengths arc
identified using the techniques we discuss here, a new version is built, and so on.
We hope extended examples from our work with PROUST detnonstrate the value
of these techniques.
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Knowledge Level Analysis: What does the ITS know?

IKnowledge level analysis provides uscful information about whether the program
knows enough to perform its intended tasks. It is concerned not with how the
program accomplishes the tasks but with what the program can conceivably do and
with whether the program has the compctence to perform certain tasks. In essence,
knowledge level analysis focuses on whether the program has cnough of the right
kinds of knowledge to mect the requircments that were set for it.

We have carefully analyzed the knowledge PROUST contains. By using these
analyses and deriving explicit descriptions of types of knowledge in PROUST, we
have discovered certain weaknesses in its representation. Figure 8.7 shows a frag-
ment of a rainfall program that PROUST cannot completely analyze. To us, it is
clear that the student intended the variable MaxRain to hold the maximum amount
of rainfall entered and intended the code MaxRain := DailyRainfall to serve as
the plan to calculate the maximuin. We can infer this because we know what the
variable name MaxRain probably mecans. However, PROUST does not know that
certain kinds of variable names mecan certain things; that is, PROUST lacks lexi-
cal and semantic knowledge. It cannot completely understand this student’s code
and gives the incorrect tutorial advice that the student has failed to include in the
program a plan to calculate the maximum amount of rainfall.

As a result of discovering several programs that PROUST could not understand
completely because it lacked lexical knowledge, we altered the specifications for the
subsequent version of PROUST to require that PROUST be able to reason about
intended meanings of variables based on their names.

Program Process Analysis: How does the ITS do what it does?

Program process analysis consists of evaluating whether the program does what
it does in the right way. In contrast to knowledge level analysis, which asks whether
the program is able to perform certain input-output tasks, program process analysis
looks at just how a program uses its knowledge in the process of going from input
to output.

For example, we have expended considerable effort understanding traces of
PROUST to determine exactly how it uses its knowledge. This process analysis has led
us to redesign PROUST’s overall control structure. Extensive process tracing showed us
exactly what kinds of cases PROUST could not understand because of its rigid top-down
method of analyzing student’s programs.

Figure 8.8 shows a program that we can understand very easily. The reason
PROUST fails to understand it completely is quite interesting. The student has
incorrectly typed the sentinel value that controls execution of the main loop. In-
stead of five 9s, the student has typed only three 9s. One of the consequences of
PROUST'’s strict top-down control structure is that it must anchor its analysis on




Program Rainfall(input,output);
Var DailyRainfall, TotalRainfall, MaxRainfall, Average : Real, RainyDays, TotalDays : Integer;
Begin

Readin(DailyRainfall);
While (DailyRainfall <> 999) Do BUG 1: Should Be "99999"
Begin
If DailyRainfall >= 0 Then

MaxRain := DailyRainfall BUG 2: Uinconditional Assigniment
Read(DailyRainfall)
End,;

End.

Figure 8.7. An Example of PROUST’s Necd for Lexical Knowledge.
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Program Rainfall(input,output),
Var DailyRainfall, TotalRainlall, MaxRainfall,Average : Real;
RainyDays,TotalDays . Integer;
Begin
RainyDays:= 0; TotalDays:= 0; MaxRainfall:== 0 TotalRainfall:= 0;
Writeln (‘Please Enter Amount of Rainfall’);
Readin(DailyRainfall),
While (DailyRainfall <> 999) Do  BUG: Should be "99999"
Begin
If DailyRainfall >= 0 Then
Begin
If DailyRainfall > 0 Then RainyDays := Rai..yDays - 1;
TolalRainfall := TotalRainfall -} DailyRainfall;
If DailyRainfall > MaxRainfall
Then MaxRainfall : == DailyRainfall,
TotalDays : = TotalDays 4 1
End;
Else Writeln (‘Rainfall Must Be Greater Than 0');
Read(DailyRainfall}
End;
If TotalDaysCounter > 0 Then Begin
Avcrage := TotalRainfall/ TotalDays;
Writeln('Average is: ', Average: 0:2);
Writeln(‘Maximum is: ', MaxRainfall: 0:2);
Writeln(' Total Number of Days is: ', TotalDays);
Writeln(‘ Total Number of Rainy Days is: ', RainyDays)
End;
Clse Writeln(‘No Valid Days Entered.’),
End.

Figurc 8.8. An Example of PROUST’s Necd for Bottomn-up Analysis.
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the main loop in order to proceed with the analysis; that is, it must find the main
loop or it cannot find any of the other inain pieces of the program. One of the
tasks it must carry out to anchor on the main loop is to find the sentinel value
that controls the loop execution. It turns out that PROUST can recognize a range
of sequences of 9s; but the range extends only from four 9s to six 9s. Obviously,
PROUST could be made to work in this case by extending the range of sentinel val-
ues it can detect to any number of 9s, but this solution is bad because it is specific
to this bug. The program process analyses of PROUST led to a far more general
alternative.

Notice that, aside from the 999 bug, the program is perfect. Especially notice
that the contents of the loop do exactly what they should do; the counters are
updated correctly, the maximum is calculated, a new value for rainfall is obtained,
and so on. The co rectness of the contents of the loop help us to understand the
program: because the loop with the three 9s as the sentinel contains everything
that a correct loop should contain, we conclude that this loop is the main loop.
But PROUST cannot even see that the correct functions are in the loop because
it must identify the main loop before it can find the contents of the loop. Once
we understood how PROUST performed its analysis, and more importantly why it
overlooked the contents of the loop, we were led to the general solution of combining
top-down analysis with bottom-up analysis. This solution seems obvious in retro-
spect; however, it was not until we had extensively analyzed how PROUST behaved
in this case and similar cases that we felt confident enough to commit ourselves to
fundamentally rework PROUST’s control structure.

Tutorial Domain Analysis: What should the ITS do?

Tutorial domain analysis is a reasoned approach to adding new tutorial capa-
bilities to an ITS. Initial descriptions of the domain to be tutored serve as part of
the design spccifications for an ITS. Although these descriptions may be generally
appropriate, the aspects of the domain that the designers wish to tutor may shift
as the program takes shape and as the process of tutoring in the domain becomes
better understood. For this rcason, ongoing evaluation of the appropriate domain
of tutoring can help maintain a clear view of the goals of the ITS.

In our work with PROUST, for example, our notions of what we wanted PROUST
to be capable of teaching have slowly cvolved over the ycars. At first, we simply
wanted it to identify bugs. Then we felt that it might be possible to auginent
PROUST just a little so that it could give students some advice about the kinds of
test data might be helpful for tracking down the bugs that it located. We looked
at the test-data problem and rejected scveral solutions because they seemed far
beyond the then-current capabilities of PROUST. Finally, we decided to broaden
PROUST’s domain of tutorial expertise.

When we observed PROUST in action, we saw that we could build naturally on
PROUST to provide the student with a wider range of skills than we had originally

218




intended. This ongoing domain analysis has an additional positive impact on the
cyclical design process. It prevents us from adding capabilities to PROUST without
understanding how such new additions fit with the general requirements and theory
for tutoring the domain. Thus, internal cvaluation has led to a more coherent ITS
than we might otherwise have developed.

Lessons Learned

In summary it is important, yet difficult, to understand the relationship between
an ITS’s architecture and its behavior. Three questions - what an ITS knows,
how an ITS does what it does, and what an ITS should be doing - seem relevant
to internal evaluation, and three knowledge engineering techniques can be used to
explore them. We recognize that our treatment of internal evaluation is preliminary.
Nonetheless we have had success with these inethods, and we feel that it is useful
to begin exploring how they, and others, ight be used for internal evaluation of
ITSs.

IV. EXISTING EVALUATIONS INTERPRETED

This section of the chapter describes some of the evaluations of ITSs that have
been reportcd in the literature. These evaluations are discussed in terms of the
categories of external and internal evaluation that we have used in our own work.
The evaluations other researchers have performed do not perfectly coincide with our
categories; but at this point external and internal cvaluation are only ideals or goals.
No one we know, including ourselves, has yct carried out such evaluations in an
elegant, comprehensive way. Nonetheless, this analysis of other research strategies
clearly shows that efforts to perforin external and internal evaluation arc worthwhile.

This section begins with two case studies of ITS evaluation. The first focuses
on evaluations of WEST that arc like what we have called external evaluation.
We have selected WEST as an example becausc it is widely known and because
the evaluations of WEST show how evaluators have begun to grapple with the
problem of basing evaluations on process models. The second case study illustrates
how Williamn Clancey and his colleagues, using several methods akin to what we
call internal evaluation methods, redesigned the rule base of MYCIN to create
NEOMYCIN, a tutorial system that teaches strategies for medical diagnosis.

External Evaluation: WEST

WEST (Burton & Brown, 1982) is a computer coach that helps students learn
how to play the two-person adversary boardgame “How the West Was Won” (HTW3).
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The goal of HTW3 is to beat an opponent to the end of a 70-space board. A student
determines cach move by combining three arithmetic operands, provided by a ran-
dom device, with arithmetic operators to compute a number of spaces to move. For
example, a student might construct the expression “(4/2) + 3” to move five spaces
forward on the board. Special moves, such as bumps, introduce the fun into HTW3.
For example, a player can construct an arithmetic expression that lands him or
her exactly on the oppounent’s square, then the player can bump the opponent and
make him or her move backwards two towns, which appear every ten squares on
the board. Thus, the goal of playing HTW3 is to use the operators and operands
not to construct the largest number but the nuinber yiclding the greatest strategic
advantage.

WEST is called a coach because of the tutorial principles it incorporates. The tutor in
WEST strongly avoids overadvising the student. It sits in the background looking over
the student’s shoulder, until it is clear that the student needs some help and the student
would benefit from the help that WEST could give. Then, by making a few suggestions,
WEST attempts to help the student improve his or her skills.

WEST’s general approach to student modeling is of identifying the student’s
use of skills for constructing arithmetic expressions that achieve optimal moves in
HTW3. WEST does not attempt to model the process of the student’s construction
of arithmetic expressions. Instead, it represents whether the student can apply
strategies when they are called for. WEST does this by rccognizing which strategies
a student uscd to construct a move. Thus, WEST’s student model can be seen as a
checklist of skills the student can and cannot usc correctly. This type of issue-based
tutoring is also discussed by Anderson and by VanLehn (both in this volume).

In 1978, J. S. Brown and his colleagues performed some initial evaluations of
WEST. These evaluations assessed the extent to which students learned to use
different move patterns depending on whether or not they were coached by the
WEST tutor as they played the game (Burton & Brown, 1982). In essence, the use
of move patterns defines the student model of WEST. Theinitial findings suggested
that WEST's student model captured some of the important features of students’
strategic arithmetic problem solving. Coached students used a wider variety of
optimal moves than uncoached students and also made more effective use of the
special moves than uncoached students did. Thus, there is evidence not only that
the WEST tutor cffectively coached students in skills for strategically constructing
arithmetic expressions, but also that WEST’s student model was powerful enough
to capture some interesting aspects of the process by which students solve tasks
such as selecting correct moves.

In 1985, Baker reported a more cxtensive evaluation of WEST. As Burton and
Brown had done, Baker performed a controlled experiment; but her experiment
included both (a) extensive assessments of the arithmetic skills of students prior
to and following experience with WEST and (b) pretraining for students on skills
that might be useful for playing HTW3. The general findings of Baker’s study
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were somewhat equivocal. No large effects were found for pregame math training
on game performance, and using WEST appeared to have no major effects on the
posttests of math skills.

Even though she did not find large gencral cffects, Baker’s evaluation was formu-
lated in order to test the impact of WEST on specific skills that WEST is designed
to help students learn. The posttest assessiment included a measure of students’
ability to sclect or construct appropriate moves in the WEST gaming environment,
For example, one question in the posttest presented to students the values of the
operands generated by the random process and a target value for an expression
combining the operands. Students were asked either to construct the target value
or to indicate that it could not be calculated with the given operands. Though the
effects of WEST on students’ ability to sclect or construct appropriate moves were
not statisticaily significant as mecasured by the post-test, the attempt to measure
specific strategies shows a concern with the cognitive processes underlying such
problem solving.

The major point of the WEST examples is that even though neither group of
evaluators explicitly described a method of basing evaluations on process models,
both groups appear to have used such a method. That is, the evaluations assessed
specific skills that WEST was designed to teach. Both studies used measures other
than the number of correct answers to assess the impact of WEST on the pattern
of use of the skills. Becausc the same skill might have resulted in either a correct
or an incorrcct answer, just counting correct and incorrect answers is not a good
indication of WEST’s impact on the student’s knowledge. The conclusions of the
evaluations do not fully clarify the effcct of WEST on students’ strategic arithmetic
skills. However, it is itnportant to kecp in mind that the student model underlying
WEST is not intended to be a powerful process model. The conclusions that can be
drawn from thesc evaluations tnust be scen in the light of the process considerations
on which they were based.

In summary, both evaluations of WEST contained measures of students’ learning
that were cast directly in terms of the skills that WEST monitors during the game of
HTWS3. Rather than focusing exclusively on aggregate effects of WEST on students’
arithmetic skills, both evaluations sought to study the effect of WEST on specific
skills that it was designed to teach. Because both evaluations attempted to relate
students’ performance directly to WEST’s model of the skills that are important
for HTW3, they can be categorized as external evaluations.

Internal Evaluation: MYCIN/NEOMYCIN

Clancey and his colleagues have the goal of using the MYCIN diagnostic system
to teach general skills of medical diagnosis (Hasling, Clancey, & Rennels, 1984).
One of the major tasks in teaching diagnosis is to explain why certain hypothe-
ses are being pursued at certain times and how to pursue hypotheses when they
are appropriate. Unfortunately, MYCIN's knowledge base, which is simply a net-
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work of rules linking symptoms and bacteriological diseascs, makes its explanations
unsatisfactory for this task of tutoring.

When MYCIN consults with a user on a diagnosis, it exhaustively chains back-
wards through its rule basc until it finds a connection between a discase and the
observed symptoms. MYCIN's explanatory capability is based completely on the
goal chains it generates during diagnosis. Thus, if the user asks MYCIN to explain
why it is performing a certain action at a certain tine, all MYCIN can do is describe
its goal stack. For example, suppose MYCIN has just asked a user whether the pa-
tient has frequent headaches. Now suppose that the user requests that MYCIN
explain why it has asked this question. MYCIN replies by identifying the specific
goal it 1s trying tu achieve with the question about headaches; this goal is to deter-
mine whether the patient has meningitis. The problein is that for someone trying to
learn diagnosis, this reply is far too specific. The novice needs to be told something
more general about why the possibility of meningitis should be pursued at this time
and why it should be pursued before some other possibility. Thus, the goal of a
tutor in diagnosis should be to explicitly teach the process of diagnosis. How to
diagnose bacteremias in particular is not uscful information when the student is
still struggling with the difficult task of learning general diagnostic principles.

Clancey and his coworkers set out to learn how to reshape MYCIN so that it could
explicitly teach diagnostic skills. In studying MYCIN’s rule base, using methods
akin to internal evaluation inethods, Clancey and his coworkers discovered that
much of the strategic knowledge that controls MYCIN’s diagnosis is implicit in the
structure of the rules. For example, the order in which MYCIN pursues alternative
hypotheses is determined by the ordering of clauses in rules that identify which
hypotheses to pursue mn the presence of specific evidence. Thus, the real reason
that MYCIN asked about headaches was that the meningitis hypothesis was next
on its list, not that it was the most likely. The meningitis hypothesis was next
on MYCIN’s list because the designer of the rule base knew that meningitis was
the most likely candidate and that it therefore should be pursued. Thus, Clancey’s
work has been to identify the kinds of diagnostic knowledge the tutorial version of
MYCIN should teach, to understand why MYCIN’s knowledge base fails to make
this knowledge available for tutoring, and then to express this knowledge as explicit
tutorial rules. So, for example, NEOMYCIN, a tutorial version of MYCIN, might
have a rule that causes it to respond to the student’s query about headaches with
a statement of diagnostic strategy. NEOMYCIN could reply that it is pursuing
meningitis because (a) it is the most likely hypothesis and (b) if meningitis can be
supported as a possible diagnosis then the largest set of alternatives is automatically
ruled out. This is just the kind of information a student of diagnosis nceds in order
to learn diagnostic skills, and it is the kind of knowledge Clancey and his group
have been uncovering with their evaluations of MY CIN.

In summary, Clancey and his collcagues have spent several years analyzing in
detail why the internal structure of MYCIN leads it to bechave as it does. On the
basis of thesc analyses, thcy have augmented and reconfigured the knowledge base
in MYCIN so thet it can support tutorial reasoning about teaching diagnosis.
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A Sampling of Evaluations

Figure 8.9 briefly describes a few of the more rcadily accessible ITS evaluations
reported in the literature. The cvaluations are identificd as Internal Evaluation
and External Evaluation. For example, the first row of the figure, corresponding
to the WEST tutor, contains bricf descriptions of Baker’s and J. S. Brown's find-
ings. The ordering of the tutors is not completely arbitrary. The first two tutors
are “coaches,” the sccond two are programming tutors, and the last tutor teaches
medical students.

Sumimary

The categorization of evaluation into external and internal strategies appears
to be applicable to many of the evaluations reported by designers of ITSs. The
case studies of WEST and MYCIN and the other evaluations referred to in Figure
8.9 support what we have found in our own experience with PROUST and now
betieve is quite general. Current techniques of external evaluation cannot determine
conclusively whether an ITS is effective. More finegrained analyses of the effects
of ITSs on students are probably required at this point in the development of
evaluation methodologies for ITSs. On the other hand,internal evaluations of ITSs,
even if they are aot as intensive as Clancey’s analyses of MYCIN, can produce
valuable insights into the causes of behavior of ITSs. Thus, although only a few
examples of evaluations have been published, and although the process of evaluation
is only now beginning to be formalized, basic concepts of external and internal
evaluation appear to correspond quite closely with the work already done by several
designers and evaluators of ITSs.
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INTERNAL
EVALUATION

EXTERNAL
EVALUATION

WEST

WUSOR

PROUST

LISP

TUTOR

NEOMYCIN

Extensive analysis ol
tutorial strategics
and how Lo imple--
ment them (Brown &
Burton, 1978)

Analysis of

WUSOR's understand —
ing of differentiat
difficulties of

skills in playing
WUMPUS

Analysis of which
aspects of PROUST
diagnose various
types of bugs
(Johnson, 1986)

Extensive analysis of
tulorial principles
embodied in tutors
(Anderson, Boyle,
Farrell, & Reiser,
1984)

Evaluations of what
knowledge in a diag—
noslic system neceds
to be made explicit
to teach diagnosis
(Clancey, 1983;
Hasling et al., 1984)

Comparison of cllects

of using WEST of bat -
tery of tests of strate—
gic use of arithmetic
skills (Baker et al., 1985;
Brown & Burton, 1978)

No formal evaluation

Comparison of test
scores of students

with PROUST to scores
of students without
PROUST (Baker ct al.,
1985, Sack et al., 1986)

Controlled experiment 1o
evaluate LISP Tutor’s
ability to teach recursion

(Pirolli, 1987)

No formal evaluation

Figure 8.9. How Current 1TSs Have Been Evaluated.
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V. DIRECTIONS IFFOR FUTURE WORK

The cvaluation of ITSs is not a new idea, but it has been underemphasized in the
past. Because evaluation of ITSs is an issue for hoth the present and the future, it
is appropriate to identify some problems that could lead to progress for the field.
Some issucs need to be addressed quite soon if credible evaluation methodologies
for ITSs arc to be developed; resolving these issues seemns within reach of current
mcthods. Other issues, which necd to be addressed over the long term, concern the
possibilitics and problems of automating the cvaluation and revision of ITSs.

Near Termn Issues

Four main issues pertaining to the evaluation of ITSs can probably be resolved
and should be addressed in the necar future. These issues and some potential di-
rections for exploring them arc briefly described in this section. The issues are
presented in order of difficulty, but ecach implics additional, equally difficult prob-
lems.

More Examples Of Evaluations Are Necded

Perhaps 20 evaluations of ITSs have been reported in the literature. Several of
these evaluations are of the same systems (e.g., WEST), and most of them are fairly
informal. Many more evaluations are necessary to generate useful abstractions that
can guide evaluation efforts. Educational evaluators and designers of ITSs need to
work closely together (cf. Baker ct al., 1985) to generate intensive, well-founded
analyses of ITSs that can be used as models for evaluation. This collaboration
should be a major priority for research in the iminediate future. The work of
designers of ITSs will benefit both from more good examples of cvaluations and
from the experiences of researchers in education and evaluation.

Analytic Methods for Evaluation

When the field of ITSs has matured, standard techniques should be sufficient
for designing ecducational studies to evaluate the effectivencss of ITSs. In addition,
techniques of meta-analysis, which are intended to identify patterns of positive and
negative effects across several ITSs (cf. Kulik, 1985), arc becoming reasonably well
worked out. Currently, becausc many ITSs are incomplete, evaluation relies on
standard statistical analyses, and the problem is simply to appropriately qualify
the conclusions from evaluations to reflect the incomplete nature of an ITS.

When statistical methods arc not applicable, a much more qualitative approach
to summarizing results is nccessary. Developing guidelines for summarizing such
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qualitative results would be a valuable enterprise. One approach is to start with
those chapters in this volume that concern a particular dimension of ITSs. If the
analyses given in the chapters were viewed as the structure of the dimension, then
perhaps informative qualitative evaluations of ITSs could be cast in terins of those
dimensions (cf. VanLehn’s analysis of the dimensions of student models in this
volume). Meta-analyses can also be performed to compare different ITSs on the
relevant dimensions.

At some point, it may be possible to define statistical inference procedures based
on these dimensions, for example by giving an ITS a positive score for each of the
positive attributes of each dimension it embodies and a negative score for each of
the negative attributes. Then, using procedures such as exact randomization tests,
sampling distributions could be gencrated for the patterns of positive and negative
scores. This statistical approach should not be taken too seriously, however. Once
two or more ITSs have been well characterized in terms of the dimensions, an
evaluation should probably be based on the meaning of the pattern of attributes
that characterize each ITS rather than ou some inferential statistic derived from
the pattern of attributes. This kind of evaluation would help designers decide
how to change ITSs that do not fare as well as ITSs with inore salutary patterns of
attributes. Thus, it secins possible to develop uscful concepts of qualitative analysis
that can be used even when ITSs are still in the developmental phase.

Partial Process Models

One of the pervasive problems of evaluating ITSs is that external evaluations
must often be performed with only partial models of the student and incomplete
ITSs. One solution may be to integrate the design and evaluation of the ITS
with elaboration of the process model. If work on the process model and the ITS
were guided by the requirements of evaluation, then attention would be directed
toward identifying and claborating subcomponents of the process model that can
be used to assess the effectiveness of corresponding subcomponents of the ITS.
For example, in our evaluation of PROUST, we identified a fairly narrow subset
of skills rclated to managing boundary condition bugs, and we then focused on
evaluating a corresponding feature of PROUST, its bug identification strategy. The
potential danger of this approach is, of course, failing to construct a system because
of too much attention to individual components. However, if designers of ITSs keep
in mind the near certainty of having only an incomplete process model and an
incomplete ITS, then perhaps they can increase the correspondence between the
more complete aspects of both.

Developing a Metric for Hard and Easy Bugs

One of the benefits of the cognitive perspective on ITSs is that it has enriched our
concept of bugs. Because, in the cognitive view, bugs are attributable to problems in
the student’s knowledge and skills, trivial bugs and hard bugs can be distinguished
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according to the complexity of the student’s misunderstanding or knowledge deficit
(Brown & Burton, 1978). For cxample, a cognitive theory of the difficulty of bugs
predicts that boundary condition bugs arc simple because no deep misunderstanding
is likely to be responsible for them. On the other hand, a student who omits a
Readln statement in the loop for the rainfall assignment, on the assumption that the
new value of rainfall is read in automatically by the loop, has a serious bug because
the cause is related to a deep misunderstanding of how the PASCAL interpreter
operat.s.

To take advantage of possible similarities in causes of bugs across domains, it may
be uscful to base a theory of bug difficulty on abstract properties of process mod-
els. For example, there may be similar patterns of bugs in different domains and,
therefore, similar causes for trivial and hard bugs. It may be that all design tasks
have analogues of the final-subgoal-dropout bugs discussed in Section II. Identifying
such similar patterns could provide the basis for more general, domain-independent,
process models for bug generation.

Long-Term Issues

The discussion of long-term issucs is not wide ranging. It focuses on one problem,
the automation of the process of building and revising ITSs. Automating this
process is important because it could lead to useful insights into theories of learning
and tcaching. These insights are possible because of the three tasks that must be
accomplished to achieve automation. First, the impact of the ITS on the student’s
knowledge and skills must be assessed. This requires being able to reason in great
detail about how students learn. Second, the results of the evaluations must be
interpreted. This requires determining what aspects of the ITS produce changes
in students. Third, the ITS must be revised to produce the desired changes in the
student based on the interpretation of the evaluation. This requires understanding
exactly what the ITS must do to produce specific changes in the student.

Thus, in order to automate the cycle of evaluation, interpretation, and revision,
it will be nccessary to automate reasoning about how ITSs cause educational change
in students. This section thercforc discusses the three steps to automating the eval-
uation process and briefly indicates how successful automation could help designers
understand more clearly the relationship between teaching and learning.

Gencrating the Evaluation Automatically

As suggested in Section II, human evaluators can use process models to design
problems for evaluating the impact of the ITS on students. By using process model
techniques to reason about the state of students’ knowledge and skills, evaluators
should be able to predict which of these problems students should be able to solve
and which they should not be able to solve. Because the process model is the basis
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for generating the problems for the external evaluation, it seems possible to write
“evaluation generator programs” to construct them.

To produce such evaluation generator programs, designers must understand how
humans gencrate evaluation problems. For example, when we designed the midterm
examination to evaluate the impact of PROUST s bug identification strategy, we
constructed programs that were seeded with bugs, some of which were boundary
condition bugs that we expected students to find if they had used PROUST. In
deciding to use seeded bugs in this examination, we actually solved three problems.
First, we constructed an appropriate context (the midterm) in which to evaluate
PROUST’s effectiveness. Sccond, we identified a task for assessing students’ ability
to manage boundary cases, namely identification and repair of bugs in seeded pro-
grams. Third, we constructed the actual bugs to sced into the programs. We can
identify only threc of the tasks we performed to devise our evaluation because we
are just beginning to understand the process of external evaluation.

A potential starting point for automating the generation of evaluations may be
both expert human diagnosticians and the theories of automated tutorial diagnosis
that have been built from studies of human experts. Much of tutorial diagnosis
involves reasoning about (a) how students should answer particular questions and
(b) how to dctermine whether a student has some particular knowledge or skill,
both of which are the basis for constructing evaluations of ITSs. Thus, insight into
the problem of automatically gencrating cvaluations may come from exploring the
relationship betwecen diagnostic tutorial rcasoning to identify causes of bugs and the
design of asscssment problemns for evaluations of 1TSs.

Interpreting the Evaluation Automatically

It may be possible not only to generate evaluations aciomatically but also to
interpret the results automatically. A point of departure for the automatic inter-
pretation effort is, again, human designers of ITSs. For example, when we decided
that PROUST’s bug identification stratcgy is insufficient for teaching the kinds of
skills for handling boundary conditions that we wanted our students to learn, we
concluded that PROUST nceds tutorial capabilities for explicitly teaching bug iden-
tification skills. That is, we assigncd the blame for the students’ poor performance
to a specific lack of tutorial expertise in PROUST. The point here is not whether
the assignment of blame was correct, but how we reasoned about it. Designers need
to understand such inference processes more clearly in order to write programs that
can reason about the results of cvaluations.

Automatically Revising the ITS Based on the Evaluation

If evaluations can be automatically generated and interpreted, then it may at
least be possible to attempt to automate the revision of ITSs. To continuc our
example of the evaluation of PROUST, after concluding that PROUST lacked nec-
essary instructional strategies, we had to reason about how to modify PROUST to
include the strategiecs.
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There appear to be three main cases to consider in rcasoning about how to
provide an ITS with appropriate knowledge and tutorial strategies. First, the ITS
has an appropriate strategy, but it needs to be modified. Second, the ITS may
have a class of tutorial strategics in which the new strategy should be placed, and
the change to the ITS is an addition of a strategy rather than a modification of an
existing strategy. Third, the needed tutorial strategy may be the first exemplar of a
new class of strategics. Obviously, these three modifications involve various degrees
of difficulty. The first is probably within reach of current methods of artificial
intelligence and the third will have to await further progress.

Once again, a promising way to begin investigating the automatic revision of
ITSs is to study human designers of ITSs. For example, it could be extremely
useful to attempt to codify the ways in which John Anderson’s group at Carnegie-
Mcllon University, or William Clancey’s group at Stanford, reason aboui changing
their ITSs. Although it may scem an ambitious undertaking, automating the cycle
of generating evaluations of ITSs, interpreting the results, and revising the ITSs
could reveal useful abstractions about ITS architectures and the assumptions about
human thought on which they arc based. LEven if this effort does not cntirely succeed
it will give designers a clearer view of how to construct ITSs and may improve their
ability to teach students to build ITSs.

Develop a Causal Explanation of Learning

One outcome of the effort to write computer programs that can generate evalu-
ations of ITSs, interpret the results of the evaluations, and then modify the ITSs
appropriately is what amounts to a causal explanation of learning. A causal ex-
planation of learning specifies the exact features of the learning environment (the
causc) that lead to precisely specified changes in the student’s knowledge and skills
(the cffect). If designers can automatically gencrate problems to use in evaluation,
then they have begun to describe the student’s knowledge and skills precisely enough
to characterize the effect side of the causal explanation. If they can automatically
deterinine what aspects of the ITS are responsible for the changes in the student,
then they have begun to precisely describe the cause side of the causal explanation
of learning. For example, if we can automatically generate the evaluation problems
for PROUST’s students to solve, and if we can automatically interpret the results
of the evaluation in terms of precise actions of PROUST toward the students, then
we will have begun to explain the instructional relationship between students and
PROUST in causal terms. Thus, although the task of automating the entire cycle
of evaluation, interpretation, and redesign is extremely challenging, progress toward
achieving it could have strong implications for theories of learning.

Summary

In summary, this section has raised several issucs that impinge on the evaluation
of ITSs. Several near-term issucs scem both tractable and relevant to progress in
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the immediate future. Tlhe long-term issucs scem less immediately tractable, but
they appear to have important implications for the theory of ITSs. This treatment
of future directions for rescarch is not exhaustive. Nonectheless, it shows that future
research in evaluation will be just as exciting as research in any other arca of
cognitive science.

CONCLUSIONS

This chapter has identified two important questions for evaluators of ITSs. Eval-
uation efforts so far have shown that evaluators need to take very seriously the
problem of assessing incomplete systems. We suggested that external evaluation,
or assessing the impact of the ITS on users, should be guided by process models of
problem solving in the instructional domain of the ITS. In addition, we suggested
that evaluation and development of ITSs should proceed in tandem, and we demon-
strated that it is both possible and beneficial to use incomplete process models as
a foundation for evaluation. The nced for methods of internal evaluation arises
because ITSs arc so complex; a major problem for designers is just understanding
why ITSs behave as they do and how they can be changed so that they behave
as desired. We acknowledged the iterative nature of the ITS design process and
illustrated several internal evaluation mecthods that, by providing designers of ITS
with information about the ITS and their own goals, could help them productively
guide the design process.

We conclude from these initial forays into the evaluation of ITSs that evaluation
is challenging, useful, and wide open. In the future, we plan to continue both our
current evaluation activities and our efforts to identify the questions and methods
that are appropriate for evaluating one of the most exciting possibilities for our
culture, namely ITSs. We realize that our approach may be controversial, and if
readers have found this chapter intriguing or provocative,then we will have achieved
one of our major goals in writing it.
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I am very interested in the vicw Soloway has of cvaluation. I know that it is
time to cvaluate these systems. I am very glad that he did not make the mistake of
going to some formative way of evaluation and that he did not look at the classroom
because it would be bizarre for us to look at the classroom now and make our distinc-
tions about these systems.

I would like to make a small improvement in what he said, however. He said
that therc is the person and therc is the machine, and we are trying to evaluate them.
What he was looking at was cxternal and internal evaluation. 1 would like to raise the
possibility that what this means is that he has seen an interface between the two, but
he is focusing attention on the machine when it should be focused on the student. By
using these words, I mean only a syntactic criticism. Focusing on internal and
rcferring to the machine implies that we should be focusing on that machine; and,
obviously, we should not. We should be focusing on what is happening to the student.
I would just like to change the terminology he used. Then I would like to ask what
internal evaluation is, and where it is? And what is the external evaluation?
Although he told us how to do it, Soloway is talking about knowledge and process
models. He did not tell us why we should do it. I am going to try to talk about why
we should make these cvaluations.

Another reason to usc thc word internal is to avoid cognitive dissonance. It
turns out that when we say internal, we almost always refer to processcs internal to the
person, right? We talk about intcrnal processes and internal mental models; so I think
we have to keep the word internal with the human.

Anyway, we look at the knowledge and skills of the student. I think that these
arc casy to identify and certainly difficult to test. You can say the student got the
problem right, but as VanLehn showed us, you get bugs that migrate and bugs that
appcarcd yesterday and disappecar tomorrow. We arc not really going to be able to
test thesc things, and we are not going to be able to know whether the student still has
that bug or the student’s mental model has changed or improved.

On the other hand, the extcrnal evaluation that Soloway suggested requires
looking at the architecture and the behavior of our systems. These are rather easy to
test. You have a screen that is wonderful, or you have icons that move, things like
that. But it is difficult to identify whether a component of the architecture led to the
behavior of the system, and if so, which one. Soloway also talked about looking at the
possible worlds that this machine could create, given the environment and the student
modcl. What are the possible manifestations of the system we are not going to be
able to figure out?
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So Soloway’s question, then, is how to evaluate the ITS. He did not say, why
bother. What I would like to suggest is that as a result of computer scientists,
cognitive scientists, educators, and instructional designers collaborating, we should be
able, with thesc systems, to know more about human lcarning and expertise. We
should be able to understand qualitative processes. We should know more about the
stability of bugs that VanLehn mentioned. We should understand mental models, and
we should be able to teach propaedcutic principles as suggested by Halff. I think the
idea is good.

We should not figure out whether the student can learn geometry and whether
the student can lcarn sixth-grade arithmetic with these systems. I put forth the
conjecture that ultimately the student will lcarn it with these systems. Our goal has to
be the other things mentioned here. Thus, in terms of internal evaluation, what is
going on in the student’s head? And externally, what are we looking for? We ncced to
have, and we are looking to develop, new technology. At that point we get the grain
sizc and start making the measurcments that Soloway is suggesting. Are wc going to
be sure that we have developed new technologies in service to pedagogy? Have we
identified what the student actually did? I think the end result of this test is to make
sure that the student model is capable of figuring out what the student did, what the
student intended to do, and what the student was motivated to do-all the things we
have bcen looking at before. Have we developed environments that aid in translation,
ctc.? In other words, some of the goals that were set out earlier here ought to be the
goals of the evaluation.

Just to reemphasize, if anyonc is not sure about it, evaluation should not be
made in comparison to the current classroom activities. I recall that Anderson
suggested putting up a system and recognizing or saying that one of the goals was to
make sure there was no difference in behavior between the student doing geometry on
his system and the student doing gcometry with a textbook. And he was asked, "Is
there a problem with weaning a studcnt from the machine?" 1 think these are local
problems that definitely demonstrate the wrong attitudc. I know if you are going to
put the system in the Pittsburgh classroom, you are going to have to deal with a
textbook that has been in place for twenty years. We cannot do anything about this,
and locally we have to test this way. But I do not think thc goal should be to have
these systems do what the gcometry textbook does, to remove the system and be able
to go back to the geometry tcxtbook. The goal is to move way beyond that.

Let us redefine geometry, not teach it. [ have hcard the statement from
Andrew Molnar at NSF that there is a summer program where they teach all of high-
school math in onc summer to rcally fast-moving studcnts. It was a research project.
I do not think you have to tcach gcomctry the way it has been taught. Should we
redesign our systems so that it takes 2 years for us to do gcometry? Can wc climinate
calculus for instance?

My thought is that designing systcms and evaluating them in comparison with
the classroom is like~I do not know why this analogy came up-preparing for a safari.
You get all this skill together, all this money together, all this training together, to go
into Africa, and you find the game animals have all been shot and all you have to do
is carry them home. I do not think 1 have to tcll pcople about the state of cducation
in this room. What I hear from Molnar is that therc is actually a 63 percent increase
in college remedial classes, which mcans that high schools are not teaching math,
English, etc.  One-fourth of all thc college freshmen take remecdial math classcs.
What are they Icarning in high school? Why should we cmulate what they arc
lcarning in high school? There is another story. The average Japanese scores 100
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percent better on science tests than the best American students do. You take the best
American students, give them a quiz, they get a certain score—-the average Japanese
scorcs a 100 percent better on that quiz. And only 75 percent of the teachers in
Amcrica are qualified to tcach the course they are tcaching. They have trained in
gym and they are tcaching math, or something like that. And (from Molnar again) we
cxpcct to be onc million teachers short in 4 years. So the classroom is definitely not
the place we should be ecmulating.

What we have got to look at is how wc can teach where others have not. This
is a statcment from Papart. It is not that we should teach the high school material, it
is that wc should teach things that have not becn taught bcfore. Perhaps it is the
cnhancement of both the quantity and quality of human knowledge to make humans
morc intclligent, not equally as intelligent. What I mcan by that statement is, for
instance, the expcriment that Burton talked about of the spiral tubc and a ball falling
through it. Students at MIT who had had 2 ycars of physics said that the ball would
continue to rotate after it lcft the tubc. Obviously thesc people, if they are at MIT
and remain 2 years in the physics program, probably had all their answers right; they
received a lot of good grades on their tests, and they could do the quantitative
problems at thc end of their book as he mentioned. Could they do the qualitative
recasoning that goes with physics?

So again to quote Greeno and other pcople at this confercnce: if you know
what you want to teach, you can do a traditional evaluation. You can teach Ohm’s
Law and Kirchhoff’s Rule and you can test it using problem solving. But if you want
to teach qualitative reasoning, if you want students to understand it-this is actually
another example—instead of using calculus to solve physics problems, let us show the
closed form. Calculus was invented because pcople could not see what was happening
in the velocity, in the acceleration of particles from onc time to another. So thcy
would set up this formula to show movement or velocity from this point to that point
as time goes to zero. Well, time does not go to zero. The thing is, now we have
simulations and we can show that; so why do not we now eliminate calculus and show
the real form of what is happening underneath?

What Greeno said is really appropriatc here: (to paraphrase) If what you want
to teach is more than what you have taught before, it will take a little longer. What I
claim is, we do not know what it is we arc tcaching, and Soloway’s methods arc
perfect for what I am saying. We just now have to expand our ideas even more. Wc¢
havc to look internally at the cognitive models and the process models of the people,
and externally at the systems, but we have to head towards this goal. Obviously, the
systems should be built with knowledge that they will be rebuilt, and we want
stratcgies that are explicit.

I would like to show you examples from a system that I have built and that is
out in the world being evaluated. I think that is what Soloway was asking for and
that this is what we have to do. The system is called thc Recovery Boiler Tutor, but
wc necd a better name for many rcasons. In this casec there were no classroom
standards, no controls; you could make no tests on this tutor and what it was doing.
The goal was to change behavior, and lct mc just tell you what it was about. It deals
with a problem in thec Amecrican papcr and pulp industrics concerning a very
cxpensive boiler that was involved in many accidents. The boiler costs about $70
mitlion to build and is about 14 stories high. Human operators run this boiler, and
through human error many dcvastating accidents have occurred. The insurance
company claimed they would cut the insurance by the end of this next year if we did
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not get a system in place that would tutor the opcrators. These operators have a high-
school cducation, and that means thcy rcad at the sixth- or seventh-grade level. And
so thc manuals that were writtcn were put in file drawers and ncver read. Therc were
classes given, and still thcre was no change at all in the number of accidents.

We nced to know what the operator’s mental modcels are that did not allow him
to operate the system before and whether we changed those mental models to allow
him to operate it aftcrwards. There is no tcst we can give. We just have to make surc
there are no morc accidents. This is a casc of on-sitc training. We arc using adult
students, and the process model is unknown.
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Figure 810. Recovery Boiler Tutor, Example 1

Figure 810 is a screen from our system. We give the student a series of screens
from which he is able to select problems. We provided a system that knows about 40
or 50 emergency situations for this particular boiler. Thc student is able to look at the
abstract meters (left side of Figure 810) that do not exist in thc system. What we have
donc is to synthesize about 10 paramcters in terms of safety cmissions, efficicncy, and
rcliability so that the student can possibly make abstractions that he was not capablc
of making before. We havc also given the student all the meters he typically uses.

Additionally, we have allowed the student to look at the recovery boilcr shown
in Figure 811 and to focus in at various points.

There are S or 10 views that the student can focus on, and he can look at dif-
ferent things. For example, in Figure 812 the student can look at the fire bed. The
burning bed gets larger, gets darker, or gets smaller. The student can review the
animation of water and stcam on cvery slide. So it is a pretty sophisticated piecc of
graphics. The student can opcn up this pancl board (Figurc 811) and actually sec the
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Figurc 812. Rccovery Boiler Tutor, Example 3.
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hundred parameters that he is supposed to be in charge of. The student can look at
various parts of the mill and sec if things are moving the way they should. For
cxample, the student can look at a smelts spout, which sometimes gets plugged. If it
gets plugged up, he can sce that it is not moving anymore. The student can change
about 40 of thc 100 paramcters in the simulation. This is an emecrgency board. If
things are going badly, he can sce what is going on. For example, the studcent can sce
that O, is high or low and that the drum level or outlet temp is beyond threshold.
Othcr things the student can move--as I said, about forty of these paramctcrs—is the
liquor flow, or thc liquor solids, or the liquor solids again, or the temperature. The
student does this with a mousc. And hc can ask to sce at any time what is going on in
different parts of thc mill. This is a complete real-timc simulation. The student can
ask for the liquor chemistry, for cxample (sce Figure 813).
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Figure 813. Recovery Boiler Tutor, Example 4.

Meanwhile, during an emergency, these arrows actually will go down into the
red. If they go down into the red, the student should try to correlate that with some
of the things hec is sceing on these charts. And this is what the student can do. He
can look at the boiler and scicct reports. You might be surprised to sec this system on
an IBM AT, but we have used ecnhanccd graphics, etc. It is very powerful.

The system has a knowledge reprcsentation of what the student has to know.
It has a student model, and it has teaching strategics that I will talk about a little. Our
goal here was to make sure that this student, who is working with this system, is able
to change some of his mental models. The way that we do that is to cnter into
dialogues with the student. Figure 814 illustrates how the tutor will work with the
student. When the tutor says, "Your actions are correct. However, at this timc,
rodding alone is not effective,” it mcans that if the student had done this action
carlier, it might have worked. It docs not work now because the student Ict the boiler
go too long. This gocs on in the regular systcm. In some cascs, the thing would have
cxploded by now, and we animate that process, tce. \ ‘
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AN ALARM SOUNDS

Student: Check smelt spout cooling water.
[Student's action does not result
in a change in the boiler.]

Tutor: It looks as though the liquor isn’t burning. . .

STUDENT REQUESTS HELP
Student: Help. What is going on?
Tutor: A partial blackout is occurring and this
causes TRS, CO, SO, and O, to increase. Steam

flow and steam temperature are dropping.

I think part of the bed is not burning.

GRAIN OF TRUTH CORRECTION
Student: Rod the primary air ports.

Tutor: Your action is correct; however, at this time
rodding alone is not effective. . .

Student: Raise the liquor temperature.
Tutor: Rodding the air port apparently was not enough
to undo the blackout.
[No improvement.
New alarm sounds]

CONFIRMATION

Student: Increase the oil fuel supply.
[Emergency is now reversed.]

Tutor: That solved the problem all right.
Good thinking.

Figure 8.14. Interaction of Tutor with a Student
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After the dialogue, the tutor produces an analysis of the emergency. The dia-
logue monitors what the student is doing and gives him advice. It never gives the stu-
dent the right answer bccausc we want him to rccognize from the rcsults on the
machine what his actions arc. This is quite different from the gcometry and LISP
tutors built by Anderson. In operation control, we do not have to show him the
problem. All the student has to do is look at thc machine and see that somcthing is
going wrong, and this is just what we want to train him in.- We want him to rccognize
for himself. We do not want anyonc to tcll him.
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Figure 815. Recovcry Boiler Tutor, Example 5.

Another thing we provide to change the mental models is what we call
trending. Figurc 815 illustrates how the studcnt can sclect parameters and measure
them against timc and against cach other. The goal is for the person to start to
rccognize that when oxygen goes up then maybe air flow goes down. If this happens
again here and with a certain result, you ought to associate these two things. Sincc
this system is bcing used in industry-—there are 20 of them being evaluated undcr
formal cvaluation now-we can sce if the system can solvc an cmergency.

What I want to do is see if Soloway’s framework helps us at all. Hec says we
are trying to mcasurc understanding. He says, What is internally—-again this is my
definition of what I think is internal-what is hard in the recovery boiler program?
What is the cognitive model? I cannot tcll and we are trying to find out. What we
know is that, if there are fewer accidents, probably we have arrived at some of the
cognitive models. Pecople tell war stores while using this machine. A group of peoplc
will sit around this machine, just as they did at Xerox, and they say, "Oh, well, in 1945 |
had a case where this happencd,” and thcy will recrcate the emergency on the system.
This is pedagogically useful; good things are happening and good discussions. The
questions are: Can we count thc process steps? Can we look at the microbehavior?
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Again, I do not know whether the granularity is appropriate for us to do these things
yct.

As for external cvaluation, we had to represent an environment in terms of the
machinc. Wec had to crcate an cavironment that would change mental models, so we
crcated these abstract meters that I showed you, the animation, dialogue, and the

trends.

In summary for that system, what we rccognize in terms of cvaluation is onc
thing that Soloway did not mcntion. That is the need for in-housc expertise. In this
particular system, we had about 30 ycars of chemical engincering expertise; becausc
the programmer was a chemical engincer, as was his boss and /lis boss. They knew the
emergencies very well, and thcy knew how to train for them. We also have to clarify
our teaching strategies. In this system, in order to subordinate teaching to learning--in
other words, to keep the tutor quiet and to allow the student to do things and
implement changes so that he can learn from his own work-we had to really program
out what the machine could do. We thought silence in itsclf would be a recognition of
the lecarner’s role in the training process. And we are beginning to see that it can
work for multiple students. 1 am really happy about that becausc onc-on-one tutoring
may bc wonderful, but it may not be the only way to Icarn. So we find three or four
pcople, even experts and novices, getting to work with the system.

The proposed cvaluation parameters look promising. We necd claboration and
rcfinement.  That is, we nced morc case examples in which wc can test this
framework. We nced many more systems out thcre, both in the classroom and on the
job site before we can cvaluate these things.
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CHAPTER 9
DIRECTIONS FOR RESEARCH AND APPLICATIONS

J. Jeffrey Richardson
Exccutive Director
Center for Applied Artificial Intelligence
University of Colorado at Boulder

This chapter presents a synthesis of the rccommendations presented in foregoing
chapters for the future development of I'TSs. The rccommendations are organized under two
broad catcgorics, rescarch and applications. The distinction made betwcen research and
applications is that research is conccrned with the additional knowledge and understanding
nccessary to build ITSs; applications are conccrned with building, with the available
knowledge, ITSs that can meet thc instructional rcquirecments of individuals and
organizations.

The information in this chapter should be of use to dircctors of research programs,
faculty and scientists interested in pursuing research in ITSs, students curious about future
directions for the field, and consumecrs of training. For the practitioner, the applications
suggestions provide examples of ITS projects that are feasible and practical solutions to
training nceds. At the same time, the rescarch suggestions involve some risk and uncertainty,
and projects designed to mect practical instructional necds should not be structured arounl
thecse approachcs.

1. RECOMMENDED RESEARCH

Meta-Theory of Expert Knowledge

State of the Art

The subjects taught by ITSs can be divided into two broad categorics: those that deal
with declarative knowledge (general knowledge about a topic, its vocabulary, relations, and
methods) and procedural knowledge (specific knowledge about how to achieve a goal by
applying and cventually automatizing general knowledge). An additional type of knowledge
and knowledge rcpresentation is so new to artificial intelligence that ITSs for this type have
not even becn implemented; namely, causal knowledge (reasoning from first principles). The
I'TSs in the literaturc teach specifically cithcr declarative or procedural knowledge and do not
take into considcration whether or how these types of knowledge might interrelate (sce

Andcrson, Chaptcer 2).

Opportunity

Common sense suggests that any intellectual endeavor involves both knowing about
things and knowing how to do things. We know about numbers and their symto's, notation
schemcs, and kinds of operations on numbers, but we also know how to calculate.
Educational psychology has for 50 ycars argued that rotc memorization of procedures is an
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inferior instructional approach to tcaching with mecaning. Cognitive psychology has found
distinct mixes of declarative and procedural knowledge and associated problem-solving
stratcgics in contrasting expert and novice performance. Early ITSs faced tough challenges,
and rescarch cfforts had to focus on manageable objcctives, such as the declarative aspect of
a task only, or the proccdural aspect only, but not both. Now that modest successes have
been achieved, and now that a considerable body of cxpcerience and technique has developed,
the ficld should address intcllectual activity in a morc comprchensive manncr.

Basic Research

Further basic research is needed in building a mcta-thcory of cxpert knowledge that
shows how declarative, procedural, and causal knowledges relate. Picces of this rescarch have
been conducted, such as Andcrson’s ACT* thcory (Anderson, 1983) or studics of differences
between experts and novices (Larkin, 1980); but further work is necded to establish a solid
foundation in knowlcdge representation for I'l'Ss to build upon.

Applied Research

While a comprehensive theoretical foundation is being built for a meta-thcory of
cxpert knowledge, there is absolutely no reason why some initial effort cannot be made in
developing ITSs that formally rcpresent and tcach both thc declarative and procedural
aspects of a domain. One approach would be to take an existing ITS that is proccdural and
augment it with declarative knowledge.

Causal Reasoning and Qualitative Simulation

State of the Art

Only recently has there developed a significant body of artificial intclligence
literature on the subject of causal reasoning and qualitative simulation. One of the classic
works in causal reasoning is SOPHIE 111, the third and last of the SOPHIE systems (Brown,
Burton, & de Klecr, 1982) for clectronic troubleshooting. The knowledge representation issucs
were so challenging that SOPHIE III focuscd on them solely, lcaving as future work the job
of completing the student modcling and tutor modules of an ITS for this form of knowledge.

Opportunity

No ITS has becen devcloped explicitly to investigate tutoring through the use of
qualitative simulation. SCHOLAR had 2 dcciarative knowledge representation for rainfall in
the form of a semantic net, but it was not a simulation. Beccause onc of thec most important
training domains is maintcnance, where qualitative simulation is the principal form of
rcasoning, therc is a great opportunity here to move the ITS ficld forward, both in the
theoretical and practical scnscs.

Basic Research

Although there is a goed artificial intelligence research base in qualitative simulation
(Bobrow, 1984), no single rcpresentation in artificial intclligence has predominated for this
type of rcasoning. Qualitative simulation is an active ficld of rescarch in artificial

244




intelligence, and its furtherance would scrve ITSs. Cognitive thcorics of qualitative
simulation arc in a similar situation. Descriptive work has bcen published in the
troubleshooting literature (Keller, 1985), and a theoretical foundation for mcntal models cxists
(Card, Moran, & Newell, 1983; Gentncr & Stevens, 1983). However, further studies nced to
focus spccifically on explicating how pcople rcason with mental modecls.

Applied Research

While basic research is underway in the cognition of causal reasoning, ITSs can be
built using artificial intelligence tcchniques for qualitative simulation in the expert modulc .
The direct cognitive validity of these techniques will not yet have been established, but they
will serve as an approximation and afford the opportunity to build ITSs with a representation
for cxpert knowledge that has yet to be utilized.

Natural Language and Tutorial Discourse

State of the Art

Teaching is an act of communication that allows the transmission of culture from
gencration to generation. Wc use language for many purposes, but clearly one of the most
important uses is tcaching. What there is to know about how people use language to teach
must thercfore be great indced. However, the educational litcrature says much more about
classroom intcraction, questioning strategics, and teaching mcthods in formal instructional
situations than about tutoring,

Opportunity

Builders of ITSs need a knowledge of tutoring that is prescriptive in nature, not
descriptive. Tl.at is, they need a computational form of the rules of tutorial discourse. Some
work in this area has been conducted by Collins and Stevens in SCHOLAR (Collins, 1976)
and by Clanccy in GUIDON (Clanccy & Lctsinger, 1981). But these few first attempts merely
scratch the surface of this ficld.

Basic Rcsecarch

A thcorctical approach nceds to be devcloped for investigating the linguistic character
of tutorial discourse. Empirical, descriptive studies of classroom or tutoring situations need
unifying concepts to direct the search for data. Clearly, the vast educational literature should
be incorporated from thc start in a basic research cffort to develop computational
models of tutorial discoursc, but researchers nced to devclop an overall strategic approach to
this problem. The investigation, as far as ITSs are concerned, should focus on tutorial
interactions (one-on-onc teaching situations) in preference to classroom situations. A
research question of interest is thc domain independence (or dependence) of tutorial
strategics, as suggestcd by Halff (Chapter 4).
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Applied Research

Because the goal of the basic research effort is a computational theory, it will be
necessary to express this theory as running ITSs and to test this theory by using the ITSs to
tcach students. This work has begun, notably with Woolfe’'s Meno-Tutor (Woolf &
McDonald, 1985), and should be coatinucd and expandcd. Researchers should continuc to
claborate on the curriculum and instruction part of ITSs, in particular with computational
schemes implementing what wc alrcady know about tutoring.

Realistic Student Modeling

State of the Art

Realistic student modeling in ITSs requires the modeling of the studcnt’s cognitive
development throughout the course of acquiring expert-level competence in a domain. It
must track, in Piaget’s terms, the changes that occur as incremental assimilation triggers
accommodations in the way the studcnt views the domain. It should faithfully track and
monitor the changes that occur as a novice becomes an expert. That is, it should be able to
predict and note when the novice’s mecans-ends, backward reasoning, which is dependent on
surface structure, shifts to the expert's pattern recognition and forward reasoning, which is
dependent on decp structure.

Opportunity

Student modeling techniques are just beginning to acquire this capability, notably
through the use of bug libraries and bug part libraries (VanLehn, Chapter 3). Researchers
have little theorctical undcrstanding of the devclopmental course of knowledge that is
prescriptive and procedural rather than descriptive. They can model novice and expert
performance in physics, and can even model a few intermediate points; but fully articulated
developmental models suitable for I'TSs do not exist in physics or in any other domain. The
standard student modeling tcchniques rcpresent student knowledge as a proper subsct of
expert knowledge (the overlay mecthod) or augment this representation with a library of bugs
or bug parts (VanLehn, Chapter 3). The beginnings of a developmental theory for the source
of these bugs is evident in repair theory (Brown & VanLchn, 1980), but this thcory has bcen
worked out only in simple domains such as subtraction.

Basic Research

There is a big potential rescarch agenda in modeling the acquisition of expert-level
skill. This research would ask what developmental changes occur in the representations and
processcs used in rcasoning about spccific domains as expertisc is acquired. It would also
investigate how these changes occur. One clue to the answer to this last question is that,
somchow, qualitative simulation or causal rcasoning helps lecarners convert more and morc of
their dcclarative knowledge into procedural knowledge, and that this process somechow causcs
changes in the way thc declarative knowledge is represented.
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Applicd Research

Current tcchniques for student modcling need to be broadened to account for learning
and thc changes in representation and process that lcarning engenders. Some procedural
studics have been done, for example in the balance beam (Klahr & Sicgler, 1977), suggesting
that for a suitably chosecn domain some progress could be made in enhancing the way ITSs
model students. Physics, perhaps orbital mechanics, might be a good place to start because of
the prior work on distinctions between cxperts and novices in physics.

II. RECOMMENDED APPLICATIONS

Design Issues

In order to apply what rescarchers have learned about ITSs, it is necessary to make
the design of ITSs somewhat systematic. That is, practitioners will benefit from guidance
regarding how thcir instructional or training requircments map onto ITS design alternatives
or architectures. As each preceding chapter has discussed, a number of design alternatives
arc available within each ITS module. For the cxpertise module, there are three principal
knowledge representations: declarative, procedural, and qualitative simulation. The choice of
knowledge representation affects the sclection of an appropriate student modeling technique.
Instructional environments may vary from microworlds, which support open-cnded discovery
lcarning, to tightly controlled simulations, in which immediate, corrective feedback is
provided for any deviation from optimal bchavior.

This book has made explicit, for the first time, the interplay between the various
modules of an ITS and the range of design options available within each module. The
information in this book could lead to dcveloping a more prescriptive decision guide for
practitioncrs to use in developing I'TSs. Examples of some of thc considerations from this
volumec that are of assistance in I'TS design are discussced in this section.

Matching Instructional Objecctives to Knowledge Representation.

A kcy to making decisions about the appropriate ITS configuration or design lies in
the instructional or training rcquircments. The answer to the question, "What form of
knowledgc must the student learn?" determines the basic knowledge representation for use in
thc cxpert module. 1f the objective is knowledge of facts, concepts, and relations, a
dcclarative knowledge representation is appropriate. If the objective is knowledge of how to
cxccute specific procedures quickly and accurately, then a procedural knowledge
represcntation is appropriate.

Matching Student Modcl to Knowledge Representation.

The chapter on student modeling (Chapter 3) maps out a three-dimensional space of
altcrnatives for ITS student models. Onc of these dimensions is knowledge type, and hence
thc choice of knowledge representation will reduce the space of student modcling options to
two rather than three dimensions. The instructional or training practitioner will need to
make a sclection in cach of thc two remaining dimensions: bandwidth and student-expert
differences. Having selected the appropriate type of student model, the practitioncr must
then determine the diagnostic technique (modcl tracing, plan rccognition, ctc.) with which to
implement the modcl.
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Matching Instructional Objectives to Tutorial Strategy and Environment.

The chapters on curriculum and instruction and on instructive environments outline
an array of options the practitioner has in dcciding how the ITS is going to interact with the
learner. One dimension discussed by Burton (Chapter 5) is the degree of abstraction. The
litcrature on ITSs offers at lcast five cxamples of troubleshooting simulations, cach at a
different level of abstraction, from use of actual equipment, to block diagrams faithful to
specific equipment, to randomly generated nctwork diagrams representing no specific piece
of equipment at all. The selection of an alternative along this dimension depends to a great
extent on the instructional objcctive, and on its place in the curriculum of objcctives.

ITS Design Summary

It is impossible to assign to one of the modules of an ITS-expert, student modeling,
curriculum and instruction, or instructional environment--the principal design constraint. The
interactions between modules are just too numerous and subtic. For example, the choice of
instructional environment determines the character of human-computer interaction, which in
turn sets the bandwidth available to the student model. Or, as VanLehn states in his chapter,
the level of refinement in diagnosis and tutoring should be the same; and thus choices about
instructional environment or instruction affect the student model, and vice versa. The best
approach to designing an ITS might be to list, for 2 given domain and instructional
application, the range of possibilitics available for each of the modules. Then, with the
maximum set of possibilitics in clear view, the process of climinating altcrnatives can be
based on the expected intcractions among modules. This approach may not be superior to a
purely "artistic" one, but it does provide a background against which to judge the merit of
cach facet of a design.

ITSs for Algorithmically Tractable Domains

ITSs can now be developed for algorithmically tractable domains, or domains that can
be reduced to fairly straightforward proccdures. The procedures can be morc complex than a
recipe or checklist, and indeed may need to be represented as a production systcm. For a
domain to be tractable, the goals must be explicit and well defined, the start statc must be
known, and all operators and the conditions of their applicability must bc known for all
states in the problem search space. Topics from elementary and secondary cducation
involving procedural knowledge, such a. subtraction, algebra, and geomctry, arc
algorithmically tractable; and cxamples of I'l'Ss for thesc domains are given throughout this
book. Other examples from the training arcna include the usc of navigational tools and thc
maintcnance of equipmcent.

Issuc-Recognizer Student Modcls for Off-the-Shelf Expert System

If the issue-recognizer method of student modeling is used, ITSs can be built from
cxisting expert systems, as discussed in Chapter 2, and it should be possible to augment off-
thc-shelf expert systcm shells to serve as ITS development shells. VanLehn (Chapter 3) does
caution that the more satisfactory approach to the cxpert module in an ITS will always be
thc one that has grcater fidelity and corrcspondence to the scquence of mental states people
usc in rcasoning.
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Simulation Kits

A simulation kit is an ITS building tool for instructional objcctives dealing with
rcasoning about systems (for example, troubleshooting). Dcvelopment of this form of
application is alrcady undcrway with the Navy’s Intclligent Maintenance Training System
(Burton, Chapter 5). If this projcct is successful, the application of ITSs to simulation-bascd
training objcctives will have been proved fcasible, and softwarc tools for doing this type of
work will have becen developed.

Medium-Scalc Evaluation And Empirical Testing

In the chapter on evaluating ITSs, Littman and Soloway make the case for intermal and
cxternal cvaluation of ITSs during their development. They argue that if the final ITS is to
bc as good as possible, it must be formally evaluated as it is being built from the perspectives
of its cffect on its uscrs and of its intcrnal functionality. That is, formative evaluation of an
ITS is a required, integral part of systcm dcvelopment.

Howevcer, in the applications sctting, summative evaluation and empirical testing arc
of paramount importance in justifying the costs of using an ITS for instruction. To date,
most [TS evaluations have focused on supporting thc devclopment of a particular ITS
resecarch prototype. For ITSs to bccome viable instructional applications, more summative
cvaluations nced to be done. A pioncering cffort in this regard is the medium-scalc
cvaluation of Anderson’s geometry tutor now underway in the Pittsburgh public schools. As
we develop ITSs for application, as opposcd to rescarch, summative evaluation will need to be
a part of the overall approach.

Applicability to Traditional Instruction

Spinoffs from ITS resecarch have enriched scveral other ficlds. One of the most
important spinoffs is the application of the concepts and philosophices, if not the mcthods, of
ITSs to traditional instruction. Richard Burton characterizes in his chapter the ncw
cducational philosophy that the ITS ficld cmbraces: the concepts of constructivism, the
importance of conceptual understanding, the rolc of preconceptions, the need to connect in-
school and out-of-school learning, the importancc of sclf-monitoring and self-management
techniqucs, and the vision of lifelong learning,

The sct of ITS modules, and the concepts and approaches each module embodics,
suggest ways to improve the development of instruction in any setting, mode, or media. As
onc cxample, the basis for all ITS instruction is a cohecrent, performance-based model of what
is to be lecarncd; that is, the expert module. As a sccond example, instruction should not be
dclivercd unless its effect on the student (ic, the student model), particularly the way it
intcracts with studcnts’ misconceptions, is understood.

I't'Ss Outside the Classroom--The Mastcr and thec Apprentice
Outsidc the classroom, education oftcn bccomes training. Industrial, busincss, and
commercial training accounts for about half of the total cducational expenditure in thc

Unitcd States. In this context, I'TSs can play a much greater role than that of classroom
tutor--thcy can become the master in the master-apprentice paradigm of on-the-job training.

249




When the apprentice joins the guild, he or she knows little and must be told much; but
cventually, through the oversight and mentoring of thc master, the apprentice becomes a
master in his or her own right. By virtuc of its expert modulc, the ITS, as the mastcr, can tell
the apprentice what to do or how to accomplish a task. This is the typical mode of
functioning of an cxpert system. But augmentation of an cxpert system with the other
architectural components of an ITS can produce a much more powerful system that is
capable not only of tclling its user what to do, but of systematically increasing the
competcnce of its user to perform unaided. This capacity to transform the apprentice into a
mastcr is what ITSs bring to the ficld of job aiding and expert systems. The material
conscquence of ITS technology will cxtend beyond the classroom.
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Appendix A

SELECTED INTELLIGENT TUTORING SYSTEMS

This appendix gives a brief description and overview of selected ITSs discussed in
this volume. Abbreviated references are followed by the number of the chapter in which
those references are first cited in full.

ACM: Automated Cognitive Modeling
DPF: Diagnostic Path Finder

The ACM system is an approach to automating the construction of cognitive process
models. Two underlying psychological assumplions are made: (a) cognition can be modeled
as a production system and (b) cognitive behavior involves a search through a problem
space. The system starts with a set of overly general condition-action rules, adds
appropriate conditions to each of these rules, and then recombines the more specific rules
into a final model. By inferring a solution path through the problem space, the system
produces a set of productions that model the cognitive behavior.

DPF was developed to improve the path-finding capabilities of the original ACM
system. The domain knowledge for testing both systems was subtraction errors.

Chapter 3

Algebraland

Algebraland is a tutoring system that can be used to study the acquisition of problem-
solving skills in algebra. The system provides a set of algebraic operators (e.g., combined-
terms, distribute) that can be successively applied to an equation until it is solved. As these
operators are applied, a search tree is dynamically created and displayed, thereby providing
a trace of the problem-solving steps taken to find a solution. This problem-solving trace
can be used by students, both during problem solving to keep track of their progress, and
afterward, 1o study the consequences of their errors and to make comparisons with optimal
solution paths.

Chapters 2, and 5

BIP, BIP IlI: Basic Instructional Program

BIP applied knowledge-based planning techniques for dynamically sequencing
problem exercises in a stand-alone, online programming course. Knowledge about the
exercises curriculum is represented in a Curriculum Information Network (CIN) that links
exercises to underlying coding skills. In BIP Il the coding skills are represented in a
semantic network that describes their interrelations. Student learning is modelled by
mapping performance on exercises onto the skills. Exercises are selected dynamically by
applying teaching heuristics to the student model to identify skills to teach and then to
determine an exercise that best involve those skills. The system was used and evaluated in
several introductory programming classes.

Chapters Z, and 4
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Bite-sized Tutor

This ITS authoring system, still being developed at the Learning Research and
Development Center at the University of Pittsburgh, is based on a three-layered
hierarchical architecture. The lowest layer, the Knowledge Layer, contains mixed
declarative and procedural knowledge represented in grouped nets of concepts connected by
predicators. Above the Knowledge Layer is the Curriculum Layer which contains the
knowledge about the sequencing of the curriculum in terms of prerequisite knowledge. The
Aptitude Layer or Metacognitive Layer, the uppermost layer, is concerned with
individualizing the instruction to suit different students’ capabilities. The architecture is
based on an object-oriented programming language.

Chapters 5, and 6

BUGGY
DEBUGGY
IDEBUGGY

These systems are some of the most frequently cited examples of using "bug"
libraries to diagnose student errors. BUGGY is a model proposed by Burton and Brown as a
framework for diagnosing misconceplions underlying procedural errors in arithmetic.
Students' errors are conceived as the products of "bugs” or errors in an otherwise correct
set of procedures. DEBUGGY is an off-line version of a diagnostic system based on the
BUGGY framework. The knowledge base in DEBUGGY contains a library of both primitive and
common compound bugs. DEBUGGY uses the pattern of errors from a set of problems to
construct a hypothesis concerning the simple or compound bugs that have generated the
errors. IDEBUGGY is an interactive version of the system that generates problems to
successively narrow the set of hypotheses under consideration.

Chapters 2, 3, and §

Geometry Tutor
LISP Tutor

These tutors are two of a series of tutors from John Anderson's laboratory. The
tutors are based on either the ACT* (Adaptative Control of Thought-star) production
system or its successor PUPS (Penultimate Production System). The systems consist of a
tutorial component, an interface, and a set of ideal and buggy rules. Using the expert rules,
the expert module is capable of solving the problems being tutored. Students’ errors are
diagnosed by means of the buggy rules.

A notable feature of the Geometry Tutor is the use of the proof graph to
communicate to the student the logicai structure of the problem-solving process by which a
proof is generated.

The LISP Tutor has the seidom-used name of GREATERP (Goal-Restricted
Environment for Tutoring and Educational Research in Programming). The ideal model of
LISP programming in the LISP Tutor is implemented in GRAPES (Goal-Restricted
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Production System). A salient feature of the LISP tutor is its immediate correction of
errors. As soon as the student makes an etror, the system attempts a diagnosis and gives a
hint as to the correct solution.

Chapters 1-6

GUIDON
GUIDON-2
IMAGE

GUIDON, an ITS for medical diagnosis, is an example of a tutoring system that was
built to interface with an existing expert system. GUIDON is based on MYCIN, a rule-based
expert system for diagnosing certain infectious diseases such as meningitis. MYCIN was
reconfigured to consist of two Separate parts: EMYCIN, a domain-independent shell for
inferencing, etc., and the medical knowledge base. GUIDON was constructed to interface with
EMYCIN and to interactively present the rules in the knowledge base to a student.

Because the rules in MYCIN often combined diagnostic rules and medical facts in such
a manner that the reasoning process was not clear, MYCIN was reconfigured in a system
called NEOMYCIN, in which diagnostic strategy was separated from medical facts. HERACLES
is the domain-independent shell for NEOMYCIN. These systems became the basis of the tutor
GUIDON-2. Image is the student modeler subcomponent of GUIDON-2. GUIDON-WATCH
is the graphic interface for all these components and is the mechanism for interacting with
the system for instruction, running consultations, and editing the knowledge base.

Chapters 1-9

IMTS: Intelligent Maintenance Training System

IMTS was developed by the University of Southern California in cooperation with
Search Technology, Inc. It consists of simulation-based software tools that can infer system
behaviors from a deep model of the system. IMTS, designed for use in training
troubleshooting skills and for conducting research in intelligent tutoring, contains a
generalized model of an expert diagnostician and domain-independent editing tools to
construct graphic simuiations of equipment systems. The initial application was for a Navy
SH-3 helicopter rotor head braking and folding diagnostic training system. IMTS operates
on a XEROX 1186 Al Workstation.

Chapters 5, 7, and 9

Kimball's Calculus Tutor

This ITS was developed for the domain of symbolic integration. The goal of symbolic
integration is to find a set of transformations that will transform a given symbolic
expression into an expression for which the integration is "known” and automatic. The tutor
can either pose problems or use problems submitted by the student. The student then
indicates an approach for solution such as substitution, integration by parts. When queried,
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the tutor responds with its estimate of the best approach. The estimate is based on a
prioritized test of choices among approaches, not on the known solution to the problem. The
expert module is not actually capable of solving the problems being tutored. The student
diagnostic module maintains a knowledge base of approaches known to the student to guide
sugggstions for approaches. The knowledge base is updated as successive problems are
solved.

Chapters 2-4

LMS: LEEDS MODELING SYSTEM
PIXIE

The LEEDS MODELING SYSTEM (LMS) is a diagnostic model for determining
sources of error in algebra problem solving. Errors are assumed to be due to incorrect
procedural rules or "mal-rules.” The underlying concept is similar to the "buggy" rules
for arithmetic in BUGGY. The LMS system is not designed for remedial teaching, only for
diagnosis of the incorrect rules. PIXIE is an on-line ITS and is based on the LMS system.

Chapters 2, and 3

MACSYMA Adviso:

MACSYMA Advisor is an automated consultant for MACSYMA, an interactive system
designed to help professionals perform symbolic manipulation of mathematical expressions.
The MACSYMA Advisor uses plan recognition as its underlying methodology for diagnosis of
misconceptions that are causing errors when students attempt to use MACSYMA. The Advisor
accepts a description of violated expectations from its user, tries to reconstruct the user's
plan, and if successful, generates advice tailored to the user's needs.

Chapters 2, and 5

Meno-tutor

This domain-independent tutoring shell is designed to manage tutorial discourse. The
system contains (a) a tutoring component, which contains knowledge bases and reasoning
mechanisms for planning the text, and (b} a surface-level language generator, which
produces the syniactically correct ulterances. Meno-Tutor was implemented with two
different knowledge bases, one concerning rainfall and one concerning Pascal programming.

Chapters 1, 4, and 9

PROUST

This ITS, which is a system for diagnosing nonsyntactic student errors in Pascal
programs, is an example of an off-line tutor that has access only to a final product or state
on which lo base ils diagnosis of student errors. The completed student programs are
submitted to PROUST, which provides a printout of the dnagnosus This system is discussed
in some detail in Chapter 8.

Chapters 1, 3, and 8
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SCHOLAR

One of the earliest ITSs, SCHOLAR is a mixed-initiative system for tutoring
declarative knowledge. The original system was developed with a knowledge base about South
American geography. The knowledge base is represented as a semantic net of objects or
concepts. It uses a Socratic style of tutoring, first attempting to diagnose the underlying
misconception in the student's knowledge, then posing a problem that will force the student
to discover the errors. '

Chapters 1-4, 6, and 9

SOPHIE 1, SOPHIE i, SOPHIE 1l

The three SOPHIE (Sophisticated Instructional Environment) systems are successive
generations of a system for tutoring electronic troubleshooting. For Sophie I, the
underlying "expert" or simulation of the device (a regulated power supply) is implemented
with a general purpose electronic simulator called SPICE (Simulation Program with
Integrated Circuit Emphasis). Faults can be inserted in this simulation, and the student then
diagnoses them. In addition to the simulation, the system contains a natural language
interface which permits students to pose questions. SOPHIE Il extends the basic
environment of SOPHIE | with the addition of an articulate expert based on a prestored
decision tree for troubleshooting the power supply and annotated with schema for producing
explanations. SOPHIE Il contains three modules, the electronic expert, the
troubleshooter, and the coach. SOPHIE lll is a radical departure from SOPHIE | in that the
underlying expert is based on a causal model rather than a mathematical simulation

produced by SPICE.

Chapters 1-6, and 9

SPADE

The tutoring environment of SPADE is designed to teach higher level concepts, such
as styles, strategies, and organization techniques, that underlie efficient planning and
debugging of computer programs. Implemented for the programming language LOGO, the
system contains a model of the design process which it uses on-line to communicate with the
student during the consiruction and debugging of programs. Based on the expert planning
module, the system suggesls alternative designs to the student by means of menus.

Chapters 2, and 3

Steamer

This simulation of a steam propulsion plant consists of a graphical interface to a
mathematical model of the plant. The interface allows a user to select from a library of
views of the propulsion system and 1o interact with a selecled view to change the state of the
underlying simulation model. Several levels of detail of the propulsion plant can be depicted
in different views. The level of detail can vary from gauges and dials to schematic diagrams.
One instructional advantage of Steamer is the ability to show global views of systems that
are physically dispersed in a real power plant.

Chapters 1, 2, and 5-7
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WEST

An example of an ITS with issue-based tutoring, WEST provides on-line coaching for
a mathematics game first developed on the PLATO computer-assisted instructional system.
The object of the game is to move a player across an electronic gameboard by a number of
moves equal to the value of an algebraic expression that the student formulates. The coach
suggests allernative equations or strategies that would have given better performance.

Chapters 2-5, and 8

WHY

This system is another example of a tutor for declarative knowledge. WHY tutors not
just factual knowledge but the principles of rainfail as well, correcting students'
misconceptions concerning the causal models underlying rainfall. A follow-up of the
Scholar system, it also uses mixed-initiative dialogue and a Socratic tutoring heuristic.

Based on an extensive analysis of tutorial dialogue, an effort was made to characterize the
global strategies used by human tutors to guide the dialogue.

Chapters 2, 3, and 6

WUSOR

WUSOR |, II, and lll are coaches developed for the electronic game WUMPUS. The
object of the game is to focate and destroy the WUMPUS without being entrapped by the many
dangers that lurk in the maze of caves surrounding the hidden lair. WUSOR has a rule-
based expert representation and uses plan recognition for diagnosis.

Chapters 2, 3, 5, and 8
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Appendix B

GLOSSARY OF ITS TERMS

Advancement. The usc of a student model to determine whether to advance the
studcnt to the next curriculum topic.

Authoring system. A domain indcpendent component of an ITS that allows the
developer to enter specific domain knowledge into the tutor’s knowledge base.

Bandwidth. The amount of thc student’s activity available to the diagnostic model.
The thrce categories of bandwidth in ITSs, from narrow to broad, are: final statcs,
intcrmediate statcs, and mental states.

Black box expert system. A proccdurc that generates correct behavior over a range of
tasks in thc domain, but whosc mechanism is inaccessible to the ITS. (Sce glass box
expert system.)

Bug catalog. See bug part library.

Bug library technique. A student-expert diffcrence model that represents
misconceptions. It augments an expert model with a list of bugs.

Bug part library . A studcnt-expert diffcrence model that generates bugs from
fragments of valid rules.

Bugs. Student misconceptions in declarative or procedural knowledge.

Coarse-grained student model. A student modcl that does not describe cognitive
processcs at a detailed ievel.

Cognitive fidelity. The measurc of corrclation between thc cognitive model and actual
human problem solving strategy.

Cognitive model. A representation of human cognitive processes in a particular
domain.

Condition induction. A diagnostic technique used in the student modcl for constructing
buggy rules for bug part librarics, a student-cxpert diffcrence modcl. (See bug part
library.)

Constructivism. A pcdagogical philosophy that vicws learning as constructing
knowledge, rather than absorbing it.

Curriculum module. The component of an ITS which sclects and orders the material
to be presented to the student.

Curriculum selection techniques. Tecchniques that dcal with sclecting problems to
cxcrcise those areas in the curriculum where the student is weak.

259




Decision tree technique. A diagnostic tcchnique used in the student modcl that creates
a trec of paths. Each diagnosis corresponds to a path from the root to somec leaf.

Declarative knowledge. A type of knowlcdge wherc the basic principles and facts of a
domain arc understood; knowing how to use the facts (as in procedural knowledge) is
not of concern.

Deep-level tutoring. Tutoring which can provide cxplanation of the internal rcasoning
of its expert module.

Diagnostic module. The component (a process) of an ITS which infers and manipulates
the student modcl. The selcction of a diagnostic algorithm is dcpendent on the
bandwidth of thc systcm.

Direct manipulation interface. Sce first person inter face.

Divergence principle. A curriculum principlc that states that there should be a broad
representative sampling of cxcrciscs and cxamples in curricula for procedural tutors.

Enabling objectives. An instructional objcctive’s immediate prerequisite.

Environment. Thc component of an ITS that spccifics or supports the activities that
the student docs and the methods available to accomplish those activities.

Expert module. The module of an ITS that provides the domain expecrtisc, ie, the
knowledge that the ITS is trying to teach.

Expert system. A computer program which uses a knowledge base and inference
procedures to act as an cxpert in a specific domain. It is able to reach conclusions
very similar to those reached by a human expert.

Expository tutor. A tutor that is concerned with declarative knowledge. Usually
interactive dialogue is the instructional tool used in this type of tutor.

External evaluation. Evaluation of an ITS that focuses on the impact of the ITS on
students’ knowledge and problem solving.

External-internal task mapping problem. A problem in the human-computer intcraction
component of an ITS. It is a gap bctween what the user wants, the goal of the
interaction, and the actions the uscr must make to achicvc the goal.

Felicity conditions. Principles of instruction which facilitate case of learning, such as
presenting only onc new step in a procedure per lesson.

Fidelity. A measure of how closely the simulated environment in an ITS matches the
rcal world. There are four kinds of fidelity: physical, display, mechanistic and
conceptual.

Fine-grained student model. A student modcl that describes cognitive proccsses at a
high level of detail.

First-person interface. A typc of user intcrface where the actions and objects relcvant
to the task and domain map directly to actions and objects in the interface. With this
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interface the uscr has a feeling of working dircctly with the domain. An example of
this type of interface is the icon.

Flat procedural knowledge. Procedural knowlcdge that is not organized by subgoals; i.c,
an undifferentiated set of production rulcs.

Generate and test. A diagnostic techniquc uscd in the student modcl that generates
bug combinations (sets of bugs) dynamically and tcsts these for validity against
student performance.

Glass box expert system. An cxpert system that contains human-like representation of
knowledge. This type of expert system is morc amenable to tutoring than a black box
cxpert system because it can cxplain its rcasoning.

Goal-factored production system. A rule based systcm that makes explicit references to
goals in the conditional part of its rules.

Grain-size of diagnosis. Thc lcvel of detail used by the diagnostic tcchnique for
processing student models. Closcly related to bandwidth.

Hicrarchical procedural knowledge. Procedural knowledge with subgoals.

Increasingly Complex Microworld (ICM) fremework. A view of the student as being
exposed to a seaquence of increasingly complex microworlds that provide intermediate
cxperiences such that within cach microworld the studcnt can see a challenging but
attainable goal.

Individualization, A curniculum principle that statcs that exercises and examplcs
should be chos.cn to fit the pattern of skills and weaknesses that characterize the
student at the time the exercise or example is chosen.

Instruction. Actual prescntation of curriculum material to the student.

Instructional Environment. Scc environment.

Instructional Systems Development (ISD). A systams engmeer'ingappmach to the anaTysis,

design, dcvelopment, delivery and evaluation of instruction.

Intelligent Computer - Assisted I i T
Syster!rgl. P ssisted Instruction (ICAD. Synonym for Intelligent Tutoring

Intelligent Tul.orin.g System (ITS). A computer program that (a) is capable of competent
problem'solvmg in a domain, (b) can infer a learner’s approximation of competence
and (c) is able to reduce the diffcrence between its competence and the studcnt‘sy
through application of various tutoring strategics.

Interactive diagnosis. A diagnostic technique used in the student model which does not
. use a fixed list of text items.

Internal evaluation. Evaluation of an ITS that focuses on the relationship between the
architecture of the ITS and its actual bchavior.

'lssqe-orienled methodology. A mcthodology for building an ITS which relies on access
to intermediate states of cognitive processing. These intermediate states are uscd to
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identify instructionally useful issues characteristic of differences between expert and
student performance.

Issue-orientgd recognizers. Methods which note in student behavior the prescnce or
abscnce of issues or characteristic traits of expert performance.

l§sue~orienteq tutoriqg. A type of tutoring that bases instruction on patterns of
gnfferenccs in the intermediate cognitive processes underlying student and expert
ehavior.

Issue tracing. A diagnostic tcchnique used to construct a student model. A variant of
model tracing that relies on access to intermediate states of student performance
rather than on access to a highly detailed cognitive proccss model.

Knowledge level analysis. An internal evaluation method; it attempts to characterize
the knowledge in the ITS and thus answers the question: what does the ITS know?

Manageability. A curriculum principlc that states that every cxercise should be
workable and cvery example should bc comprehensible to students who have
completed previous parts of the curriculum. Manageability applies to procedural
tutors. :

Matching principle. A curriculum principle that states that both positive and ncgative
instances of concepts, procedures or principles should be presented.

Misconception. An item of knowledge that the student has and the expert does not
have. A type of student-cxpert difference. A bug.

Missing conception. An item of knowledge that the expert has and the student does
not have. A type of student-expert difference. Sce overlay model.

Mixed Initiative Dialog. An ITS environment which accepts and responds in natural
language to both solicited and unsolicitcd natural language input from the student.

Model-tracing. An diagnostic technique used to build a student model. It uses the
student’s surface behavior to infer the sequence of rules fired in a rule-based model of
performance; i.e., the student’s actions traced a path through the rule base. A major
advantage of model tracing is the almost immecdiate fccdback on student crrors as
they occur.

Overlay model. A student-expert differencc model that represents missing conceptions;
usually implcmented as either an expert model annotated for those items that are
missing, or an cxpert model with wecights assigned to cach clement in the expert
knowledge base.

Path finding. A diagnostic technique used by the student model to find a path from
one state to the next, which is a chain of rule applications. This is a way of
representing the student’s mcntal state scquence. The path is given to thc model
tracer.

Plan recognition. A diagnostic technique used in thc student model to rcprescnt
hierarchica! proccdural knowledge. It is similar to path finding in that it is a front
cnd to modcl tracing.
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Procedural knowledge. Domain dependent knowledge about how to perform a specific
task.

Procedure tutor. A type of tutor that tcachcs proccdural knowlcdge; ie, skills and
procedurcs. Usually exerciscs and cxamplcs arc used by procedure tutors.

Process model. A model which reveals the mechanism belhind behavior.

Production rule. A rule of the form condition(s) imply actions(s), uscd in modeling
cognitive behavior. A set of production rules and an intcrpreter for processing them
is termed a »roduction system.

Program process analysis. An intcrnal cvaluation method; it attcmpts to answer the
qucstion: how does the ITS do what it does?

Propaedeutics. Knowledge that is nceded for learning but not for proficient
performance.

Qualitative process model. A typc of cognitive model, concerned with reasoning about
the causal structure of the world; the simulation of dynamic processes in the mind. It
is an important facet of troubleshooting behavigr.

Repair theory. A gencrative thcory of bugs; a method of deriving bug librarics directly
from correct procedures, rcducing thc need to collect bugs through empirical
obscrvation.

Rule-based model. An expert module of an ITS that is implemented with a rule-based
(production) system. (Also called a production model.)

Second-person interface. A typc of uscr intcrface where the user gives commands to a
sccond party. Examples of this type of intcrface are command languages, menus, and
(limited) natural language intcrfaces.

Step theory. A theory that states that curriculum should be divided into discrete
lessons, cach of which adds a single decision point or step in the procedurc to be
lcarned. Scc felicity conditions.

Structural transparency. A curriculum principle that states that the sequence of
exercisec and examples should reflect the structure of the procedure being taught and
should thereby help the student inducc the target procedure.

Student model. The component (a data structure) of an ITS that represents the
student’s cu.rent statc of knowledge (mastcry) of the domain, ie, a detailed model of
student cognition.

Student-cxpert differences. The difference between the expert’s knowledge and the
student’s knowledge. There arc two basic types of studcnt-cxpert differences: missing
conceptions and misconceptions. The thrce modcls used to represent student-expert
differences are: overlay modcl, bug library technique and library of bug parts.

Surface-level tutoring. Tutoring which can be implemented with issue-oriented
recognizcrs. Access to the intcrnal reasoning of the expert module is not available.
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Target knowledge type. The type of knowledge that is represented in the expert and
student model modules. Knowledge representation can be catcgorized into three types:
procedural (both flat and hierarchical), declarative, and qualitative process model.

Tutorial domain analysis. An internal evaluation method for iteratively adding and
subtracting requirements of the I'TS design.

User Interface Management System (UIMS). A strategy that attempts to separate the
interface component of an application program from the computational part.

Web teaching. A curriculum approach wherc selection of materials is guided by two
principles: relatedness (priority is given to concepts that are closely related to existing
knowledge), and generality (discuss gcneralities bcfore specifics) Web teaching
applies to expository tutors.

Wizard-of-Oz system. Semi-automated tutors where a human tutor replaces some or all
of the instructional functions of an automated tutor. Used in rescarch and
development of ITSs.
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